aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/effects/GrPorterDuffXferProcessor.cpp
blob: aecf685e6214f2142153f4f410638b9d8bc08f94 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
/*
 * Copyright 2014 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "effects/GrPorterDuffXferProcessor.h"

#include "GrBlend.h"
#include "GrDrawTargetCaps.h"
#include "GrProcessor.h"
#include "GrProcOptInfo.h"
#include "GrTypes.h"
#include "GrXferProcessor.h"
#include "gl/GrGLXferProcessor.h"
#include "gl/builders/GrGLFragmentShaderBuilder.h"
#include "gl/builders/GrGLProgramBuilder.h"

static bool can_tweak_alpha_for_coverage(GrBlendCoeff dstCoeff) {
    /*
     The fractional coverage is f.
     The src and dst coeffs are Cs and Cd.
     The dst and src colors are S and D.
     We want the blend to compute: f*Cs*S + (f*Cd + (1-f))D. By tweaking the source color's alpha
     we're replacing S with S'=fS. It's obvious that that first term will always be ok. The second
     term can be rearranged as [1-(1-Cd)f]D. By substituting in the various possibilities for Cd we
     find that only 1, ISA, and ISC produce the correct destination when applied to S' and D.
     */
    return kOne_GrBlendCoeff == dstCoeff ||
           kISA_GrBlendCoeff == dstCoeff ||
           kISC_GrBlendCoeff == dstCoeff;
}

class GrGLPorterDuffXferProcessor : public GrGLXferProcessor {
public:
    GrGLPorterDuffXferProcessor(const GrProcessor&) {}

    virtual ~GrGLPorterDuffXferProcessor() {}

    void emitCode(const EmitArgs& args) SK_OVERRIDE {
        const GrPorterDuffXferProcessor& xp = args.fXP.cast<GrPorterDuffXferProcessor>();
        GrGLFPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
        if (xp.hasSecondaryOutput()) {
            switch(xp.secondaryOutputType()) {
                case GrPorterDuffXferProcessor::kCoverage_SecondaryOutputType:
                    fsBuilder->codeAppendf("%s = %s;", args.fOutputSecondary, args.fInputCoverage);
                    break;
                case GrPorterDuffXferProcessor::kCoverageISA_SecondaryOutputType:
                    fsBuilder->codeAppendf("%s = (1.0 - %s.a) * %s;",
                                           args.fOutputSecondary, args.fInputColor,
                                           args.fInputCoverage);
                    break;
                case GrPorterDuffXferProcessor::kCoverageISC_SecondaryOutputType:
                    fsBuilder->codeAppendf("%s = (vec4(1.0) - %s) * %s;",
                                           args.fOutputSecondary, args.fInputColor,
                                           args.fInputCoverage);
                    break;
                default:
                    SkFAIL("Unexpected Secondary Output");
            }
        }
        
        switch (xp.primaryOutputType()) {
            case GrPorterDuffXferProcessor::kNone_PrimaryOutputType:
                fsBuilder->codeAppendf("%s = vec4(0);", args.fOutputPrimary);
                break;
            case GrPorterDuffXferProcessor::kColor_PrimaryOutputType:
                fsBuilder->codeAppendf("%s = %s;", args.fOutputPrimary, args.fInputColor);
                break;
            case GrPorterDuffXferProcessor::kCoverage_PrimaryOutputType:
                fsBuilder->codeAppendf("%s = %s;", args.fOutputPrimary, args.fInputCoverage);
                break;
            case GrPorterDuffXferProcessor::kModulate_PrimaryOutputType:
            case GrPorterDuffXferProcessor::kCombineWithDst_PrimaryOutputType:
                fsBuilder->codeAppendf("%s = %s * %s;", args.fOutputPrimary, args.fInputColor,
                                       args.fInputCoverage);
                if (GrPorterDuffXferProcessor::kCombineWithDst_PrimaryOutputType ==
                    xp.primaryOutputType()){
                    fsBuilder->codeAppendf("%s += (vec4(1.0) - %s) * %s;", args.fOutputPrimary,
                                           args.fInputCoverage, fsBuilder->dstColor());
                }
                break;
            default:
                SkFAIL("Unexpected Primary Output");
        }
    }

    void setData(const GrGLProgramDataManager&, const GrXferProcessor&) SK_OVERRIDE {};

    static void GenKey(const GrProcessor& processor, const GrGLCaps& caps,
                       GrProcessorKeyBuilder* b) {
        const GrPorterDuffXferProcessor& xp = processor.cast<GrPorterDuffXferProcessor>();
        b->add32(xp.primaryOutputType());
        b->add32(xp.secondaryOutputType());
    };

private:
    typedef GrGLXferProcessor INHERITED;
};

///////////////////////////////////////////////////////////////////////////////

GrPorterDuffXferProcessor::GrPorterDuffXferProcessor(GrBlendCoeff srcBlend, GrBlendCoeff dstBlend,
                                                     GrColor constant)
    : fSrcBlend(srcBlend)
    , fDstBlend(dstBlend)
    , fBlendConstant(constant)
    , fPrimaryOutputType(kModulate_PrimaryOutputType) 
    , fSecondaryOutputType(kNone_SecondaryOutputType) {
    this->initClassID<GrPorterDuffXferProcessor>();
}

GrPorterDuffXferProcessor::~GrPorterDuffXferProcessor() {
}

void GrPorterDuffXferProcessor::getGLProcessorKey(const GrGLCaps& caps,
                                                  GrProcessorKeyBuilder* b) const {
    GrGLPorterDuffXferProcessor::GenKey(*this, caps, b);
}

GrGLXferProcessor* GrPorterDuffXferProcessor::createGLInstance() const {
    return SkNEW_ARGS(GrGLPorterDuffXferProcessor, (*this));
}

GrXferProcessor::OptFlags
GrPorterDuffXferProcessor::getOptimizations(const GrProcOptInfo& colorPOI,
                                            const GrProcOptInfo& coveragePOI,
                                            bool doesStencilWrite,
                                            GrColor* overrideColor,
                                            const GrDrawTargetCaps& caps) {
    GrXferProcessor::OptFlags optFlags;
    // Optimizations when doing RGB Coverage
    if (coveragePOI.isFourChannelOutput()) {
        // We want to force our primary output to be alpha * Coverage, where alpha is the alpha
        // value of the blend the constant. We should already have valid blend coeff's if we are at
        // a point where we have RGB coverage. We don't need any color stages since the known color
        // output is already baked into the blendConstant.
        uint8_t alpha = GrColorUnpackA(fBlendConstant);
        *overrideColor = GrColorPackRGBA(alpha, alpha, alpha, alpha);
        optFlags = GrXferProcessor::kOverrideColor_OptFlag;
    } else {
        optFlags = this->internalGetOptimizations(colorPOI,
                                                  coveragePOI,
                                                  doesStencilWrite);
    }
    this->calcOutputTypes(optFlags, caps, coveragePOI.isSolidWhite(),
                          colorPOI.readsDst() || coveragePOI.readsDst());
    return optFlags;
}

void GrPorterDuffXferProcessor::calcOutputTypes(GrXferProcessor::OptFlags optFlags,
                                                const GrDrawTargetCaps& caps,
                                                bool hasSolidCoverage, bool readsDst) {
    if (optFlags & kIgnoreColor_OptFlag) {
        if (optFlags & kIgnoreCoverage_OptFlag) {
            fPrimaryOutputType = kNone_PrimaryOutputType;
            return;
        } else {
            fPrimaryOutputType = kCoverage_PrimaryOutputType;
            return;
        }
    } else if (optFlags & kIgnoreCoverage_OptFlag) {
        fPrimaryOutputType = kColor_PrimaryOutputType;
        return;
    }

    // If we do have coverage determine whether it matters.  Dual source blending is expensive so
    // we don't do it if we are doing coverage drawing.  If we aren't then We always do dual source
    // blending if we have any effective coverage stages OR the geometry processor doesn't emits
    // solid coverage.
    if (!(optFlags & kSetCoverageDrawing_OptFlag) && !hasSolidCoverage) {
        if (caps.dualSourceBlendingSupport()) {
            if (kZero_GrBlendCoeff == fDstBlend) {
                // write the coverage value to second color
                fSecondaryOutputType = kCoverage_SecondaryOutputType;
                fDstBlend = (GrBlendCoeff)GrGpu::kIS2C_GrBlendCoeff;
            } else if (kSA_GrBlendCoeff == fDstBlend) {
                // SA dst coeff becomes 1-(1-SA)*coverage when dst is partially covered.
                fSecondaryOutputType = kCoverageISA_SecondaryOutputType;
                fDstBlend = (GrBlendCoeff)GrGpu::kIS2C_GrBlendCoeff;
            } else if (kSC_GrBlendCoeff == fDstBlend) {
                // SA dst coeff becomes 1-(1-SA)*coverage when dst is partially covered.
                fSecondaryOutputType = kCoverageISC_SecondaryOutputType;
                fDstBlend = (GrBlendCoeff)GrGpu::kIS2C_GrBlendCoeff;
            }
        } else if (readsDst &&
                   kOne_GrBlendCoeff == fSrcBlend &&
                   kZero_GrBlendCoeff == fDstBlend) {
            fPrimaryOutputType = kCombineWithDst_PrimaryOutputType;
        }
    }
}

GrXferProcessor::OptFlags
GrPorterDuffXferProcessor::internalGetOptimizations(const GrProcOptInfo& colorPOI,
                                                    const GrProcOptInfo& coveragePOI,
                                                    bool doesStencilWrite) {
    bool srcAIsOne;
    bool hasCoverage;

    srcAIsOne = colorPOI.isOpaque();
    hasCoverage = !coveragePOI.isSolidWhite();

    bool dstCoeffIsOne = kOne_GrBlendCoeff == fDstBlend ||
                         (kSA_GrBlendCoeff == fDstBlend && srcAIsOne);
    bool dstCoeffIsZero = kZero_GrBlendCoeff == fDstBlend ||
                         (kISA_GrBlendCoeff == fDstBlend && srcAIsOne);

    // When coeffs are (0,1) there is no reason to draw at all, unless
    // stenciling is enabled. Having color writes disabled is effectively
    // (0,1).
    if ((kZero_GrBlendCoeff == fSrcBlend && dstCoeffIsOne)) {
        if (doesStencilWrite) {
            return GrXferProcessor::kIgnoreColor_OptFlag |
                   GrXferProcessor::kSetCoverageDrawing_OptFlag;
        } else {
            fDstBlend = kOne_GrBlendCoeff;
            return GrXferProcessor::kSkipDraw_OptFlag;
        }
    }

    // if we don't have coverage we can check whether the dst
    // has to read at all. If not, we'll disable blending.
    if (!hasCoverage) {
        if (dstCoeffIsZero) {
            if (kOne_GrBlendCoeff == fSrcBlend) {
                // if there is no coverage and coeffs are (1,0) then we
                // won't need to read the dst at all, it gets replaced by src
                fDstBlend = kZero_GrBlendCoeff;
                return GrXferProcessor::kNone_Opt;
            } else if (kZero_GrBlendCoeff == fSrcBlend) {
                // if the op is "clear" then we don't need to emit a color
                // or blend, just write transparent black into the dst.
                fSrcBlend = kOne_GrBlendCoeff;
                fDstBlend = kZero_GrBlendCoeff;
                return GrXferProcessor::kIgnoreColor_OptFlag |
                       GrXferProcessor::kIgnoreCoverage_OptFlag;
            }
        }
    }  else {
        // check whether coverage can be safely rolled into alpha
        // of if we can skip color computation and just emit coverage
        if (can_tweak_alpha_for_coverage(fDstBlend)) {
            return GrXferProcessor::kSetCoverageDrawing_OptFlag;
        }
        if (dstCoeffIsZero) {
            if (kZero_GrBlendCoeff == fSrcBlend) {
                // the source color is not included in the blend
                // the dst coeff is effectively zero so blend works out to:
                // (c)(0)D + (1-c)D = (1-c)D.
                fDstBlend = kISA_GrBlendCoeff;
                return GrXferProcessor::kIgnoreColor_OptFlag |
                       GrXferProcessor::kSetCoverageDrawing_OptFlag;
            } else if (srcAIsOne) {
                // the dst coeff is effectively zero so blend works out to:
                // cS + (c)(0)D + (1-c)D = cS + (1-c)D.
                // If Sa is 1 then we can replace Sa with c
                // and set dst coeff to 1-Sa.
                fDstBlend = kISA_GrBlendCoeff;
                return GrXferProcessor::kSetCoverageDrawing_OptFlag;
            }
        } else if (dstCoeffIsOne) {
            // the dst coeff is effectively one so blend works out to:
            // cS + (c)(1)D + (1-c)D = cS + D.
            fDstBlend = kOne_GrBlendCoeff;
            return GrXferProcessor::kSetCoverageDrawing_OptFlag;
        }
    }

    return GrXferProcessor::kNone_Opt;
}

bool GrPorterDuffXferProcessor::hasSecondaryOutput() const {
    return kNone_SecondaryOutputType != fSecondaryOutputType;
}

///////////////////////////////////////////////////////////////////////////////

GrPorterDuffXPFactory::GrPorterDuffXPFactory(GrBlendCoeff src, GrBlendCoeff dst)
    : fSrcCoeff(src), fDstCoeff(dst) {
    this->initClassID<GrPorterDuffXPFactory>();
}

GrXPFactory* GrPorterDuffXPFactory::Create(SkXfermode::Mode mode) {
    switch (mode) {
        case SkXfermode::kClear_Mode: {
            static GrPorterDuffXPFactory gClearPDXPF(kZero_GrBlendCoeff, kZero_GrBlendCoeff);
            return SkRef(&gClearPDXPF);
            break;
        }
        case SkXfermode::kSrc_Mode: {
            static GrPorterDuffXPFactory gSrcPDXPF(kOne_GrBlendCoeff, kZero_GrBlendCoeff);
            return SkRef(&gSrcPDXPF);
            break;
        }
        case SkXfermode::kDst_Mode: {
            static GrPorterDuffXPFactory gDstPDXPF(kZero_GrBlendCoeff, kOne_GrBlendCoeff);
            return SkRef(&gDstPDXPF);
            break;
        }
        case SkXfermode::kSrcOver_Mode: {
            static GrPorterDuffXPFactory gSrcOverPDXPF(kOne_GrBlendCoeff, kISA_GrBlendCoeff);
            return SkRef(&gSrcOverPDXPF);
            break;
        }
        case SkXfermode::kDstOver_Mode: {
            static GrPorterDuffXPFactory gDstOverPDXPF(kIDA_GrBlendCoeff, kOne_GrBlendCoeff);
            return SkRef(&gDstOverPDXPF);
            break;
        }
        case SkXfermode::kSrcIn_Mode: {
            static GrPorterDuffXPFactory gSrcInPDXPF(kDA_GrBlendCoeff, kZero_GrBlendCoeff);
            return SkRef(&gSrcInPDXPF);
            break;
        }
        case SkXfermode::kDstIn_Mode: {
            static GrPorterDuffXPFactory gDstInPDXPF(kZero_GrBlendCoeff, kSA_GrBlendCoeff);
            return SkRef(&gDstInPDXPF);
            break;
        }
        case SkXfermode::kSrcOut_Mode: {
            static GrPorterDuffXPFactory gSrcOutPDXPF(kIDA_GrBlendCoeff, kZero_GrBlendCoeff);
            return SkRef(&gSrcOutPDXPF);
            break;
        }
        case SkXfermode::kDstOut_Mode: {
            static GrPorterDuffXPFactory gDstOutPDXPF(kZero_GrBlendCoeff, kISA_GrBlendCoeff);
            return SkRef(&gDstOutPDXPF);
            break;
        }
        case SkXfermode::kSrcATop_Mode: {
            static GrPorterDuffXPFactory gSrcATopPDXPF(kDA_GrBlendCoeff, kISA_GrBlendCoeff);
            return SkRef(&gSrcATopPDXPF);
            break;
        }
        case SkXfermode::kDstATop_Mode: {
            static GrPorterDuffXPFactory gDstATopPDXPF(kIDA_GrBlendCoeff, kSA_GrBlendCoeff);
            return SkRef(&gDstATopPDXPF);
            break;
        }
        case SkXfermode::kXor_Mode: {
            static GrPorterDuffXPFactory gXorPDXPF(kIDA_GrBlendCoeff, kISA_GrBlendCoeff);
            return SkRef(&gXorPDXPF);
            break;
        }
        case SkXfermode::kPlus_Mode: {
            static GrPorterDuffXPFactory gPlusPDXPF(kOne_GrBlendCoeff, kOne_GrBlendCoeff);
            return SkRef(&gPlusPDXPF);
            break;
        }
        case SkXfermode::kModulate_Mode: {
            static GrPorterDuffXPFactory gModulatePDXPF(kZero_GrBlendCoeff, kSC_GrBlendCoeff);
            return SkRef(&gModulatePDXPF);
            break;
        }
        case SkXfermode::kScreen_Mode: {
            static GrPorterDuffXPFactory gScreenPDXPF(kOne_GrBlendCoeff, kISC_GrBlendCoeff);
            return SkRef(&gScreenPDXPF);
            break;
        }
        default:
            return NULL;
    }
}

GrXferProcessor* GrPorterDuffXPFactory::createXferProcessor(const GrProcOptInfo& colorPOI,
                                                            const GrProcOptInfo& covPOI) const {
    if (!covPOI.isFourChannelOutput()) {
        return GrPorterDuffXferProcessor::Create(fSrcCoeff, fDstCoeff);
    } else {
        if (this->supportsRGBCoverage(colorPOI.color(), colorPOI.validFlags())) {
            SkASSERT(kRGBA_GrColorComponentFlags == colorPOI.validFlags());
            GrColor blendConstant = GrUnPreMulColor(colorPOI.color());
            return GrPorterDuffXferProcessor::Create(kConstC_GrBlendCoeff, kISC_GrBlendCoeff,
                                                     blendConstant);
        } else {
            return NULL;
        }
    }
}

bool GrPorterDuffXPFactory::supportsRGBCoverage(GrColor /*knownColor*/,
                                                uint32_t knownColorFlags) const {
    if (kOne_GrBlendCoeff == fSrcCoeff && kISA_GrBlendCoeff == fDstCoeff &&
        kRGBA_GrColorComponentFlags == knownColorFlags) {
        return true;
    }
    return false;
}

bool GrPorterDuffXPFactory::canApplyCoverage(const GrProcOptInfo& colorPOI,
                                             const GrProcOptInfo& coveragePOI) const {
    bool srcAIsOne = colorPOI.isOpaque();

    bool dstCoeffIsOne = kOne_GrBlendCoeff == fDstCoeff ||
                         (kSA_GrBlendCoeff == fDstCoeff && srcAIsOne);
    bool dstCoeffIsZero = kZero_GrBlendCoeff == fDstCoeff ||
                         (kISA_GrBlendCoeff == fDstCoeff && srcAIsOne);

    if ((kZero_GrBlendCoeff == fSrcCoeff && dstCoeffIsOne)) {
        return true;
    }

    // if we don't have coverage we can check whether the dst
    // has to read at all.
    // check whether coverage can be safely rolled into alpha
    // of if we can skip color computation and just emit coverage
    if (this->canTweakAlphaForCoverage()) {
        return true;
    }
    if (dstCoeffIsZero) {
        if (kZero_GrBlendCoeff == fSrcCoeff) {
            return true;
        } else if (srcAIsOne) {
            return  true;
        }
    } else if (dstCoeffIsOne) {
        return true;
    }

    // TODO: once all SkXferEffects are XP's then we will never reads dst here since only XP's
    // will readDst and PD XP's don't read dst.
    if ((colorPOI.readsDst() || coveragePOI.readsDst()) &&
        kOne_GrBlendCoeff == fSrcCoeff && kZero_GrBlendCoeff == fDstCoeff) {
        return true;
    }

    return false;
}

bool GrPorterDuffXPFactory::canTweakAlphaForCoverage() const {
    return can_tweak_alpha_for_coverage(fDstCoeff);
}

void GrPorterDuffXPFactory::getInvariantOutput(const GrProcOptInfo& colorPOI,
                                               const GrProcOptInfo& coveragePOI,
                                               GrXPFactory::InvariantOutput* output) const {
    if (!coveragePOI.isSolidWhite()) {
        output->fWillBlendWithDst = true;
        output->fBlendedColorFlags = 0;
        return;
    }

    GrBlendCoeff srcCoeff = fSrcCoeff;
    GrBlendCoeff dstCoeff = fDstCoeff;

    // TODO: figure out to merge this simplify with other current optimization code paths and
    // eventually remove from GrBlend
    GrSimplifyBlend(&srcCoeff, &dstCoeff, colorPOI.color(), colorPOI.validFlags(),
                    0, 0, 0);

    if (GrBlendCoeffRefsDst(srcCoeff)) {
        output->fWillBlendWithDst = true;
        output->fBlendedColorFlags = 0;
        return;
    }

    if (kZero_GrBlendCoeff != dstCoeff) {
        bool srcAIsOne = colorPOI.isOpaque();
        if (kISA_GrBlendCoeff != dstCoeff || !srcAIsOne) {
            output->fWillBlendWithDst = true;
        }
        output->fBlendedColorFlags = 0;
        return;
    }

    switch (srcCoeff) {
        case kZero_GrBlendCoeff:
            output->fBlendedColor = 0;
            output->fBlendedColorFlags = kRGBA_GrColorComponentFlags;
            break;

        case kOne_GrBlendCoeff:
            output->fBlendedColor = colorPOI.color();
            output->fBlendedColorFlags = colorPOI.validFlags();
            break;

            // The src coeff should never refer to the src and if it refers to dst then opaque
            // should have been false.
        case kSC_GrBlendCoeff:
        case kISC_GrBlendCoeff:
        case kDC_GrBlendCoeff:
        case kIDC_GrBlendCoeff:
        case kSA_GrBlendCoeff:
        case kISA_GrBlendCoeff:
        case kDA_GrBlendCoeff:
        case kIDA_GrBlendCoeff:
        default:
            SkFAIL("srcCoeff should not refer to src or dst.");
            break;

            // TODO: update this once GrPaint actually has a const color.
        case kConstC_GrBlendCoeff:
        case kIConstC_GrBlendCoeff:
        case kConstA_GrBlendCoeff:
        case kIConstA_GrBlendCoeff:
            output->fBlendedColorFlags = 0;
            break;
    }

    // TODO: once all SkXferEffects are XP's then we will never reads dst here since only XP's
    // will readDst and PD XP's don't read dst.
    if (colorPOI.readsDst() || coveragePOI.readsDst()) {
        output->fWillBlendWithDst = true;
        return;
    }
    output->fWillBlendWithDst = false;
}

bool GrPorterDuffXPFactory::willReadDst(const GrProcOptInfo& colorPOI,
                                        const GrProcOptInfo& coveragePOI) const {
    return colorPOI.readsDst() || coveragePOI.readsDst();
}

GR_DEFINE_XP_FACTORY_TEST(GrPorterDuffXPFactory);

GrXPFactory* GrPorterDuffXPFactory::TestCreate(SkRandom* random,
                                               GrContext*,
                                               const GrDrawTargetCaps&,
                                               GrTexture*[]) {
    GrBlendCoeff src;
    do {
        src = GrBlendCoeff(random->nextRangeU(kFirstPublicGrBlendCoeff, kLastPublicGrBlendCoeff));
    } while (GrBlendCoeffRefsSrc(src));

    GrBlendCoeff dst;
    do {
        dst = GrBlendCoeff(random->nextRangeU(kFirstPublicGrBlendCoeff, kLastPublicGrBlendCoeff));
    } while (GrBlendCoeffRefsDst(dst));

    return GrPorterDuffXPFactory::Create(src, dst);
}