aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/effects/GrMatrixConvolutionEffect.cpp
blob: ccb32cf968ac39b514f992bf898f03f906f6c821 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
/*
 * Copyright 2014 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "GrMatrixConvolutionEffect.h"

#include "GrTexture.h"
#include "GrTextureProxy.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"

class GrGLMatrixConvolutionEffect : public GrGLSLFragmentProcessor {
public:
    void emitCode(EmitArgs&) override;

    static inline void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder*);

protected:
    void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override;

private:
    typedef GrGLSLProgramDataManager::UniformHandle UniformHandle;

    UniformHandle               fKernelUni;
    UniformHandle               fImageIncrementUni;
    UniformHandle               fKernelOffsetUni;
    UniformHandle               fGainUni;
    UniformHandle               fBiasUni;
    GrTextureDomain::GLDomain   fDomain;

    typedef GrGLSLFragmentProcessor INHERITED;
};

void GrGLMatrixConvolutionEffect::emitCode(EmitArgs& args) {
    const GrMatrixConvolutionEffect& mce = args.fFp.cast<GrMatrixConvolutionEffect>();
    const GrTextureDomain& domain = mce.domain();

    int kWidth = mce.kernelSize().width();
    int kHeight = mce.kernelSize().height();

    int arrayCount = (kWidth * kHeight + 3) / 4;
    SkASSERT(4 * arrayCount >= kWidth * kHeight);

    GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
    fImageIncrementUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf2_GrSLType,
                                                    "ImageIncrement");
    fKernelUni = uniformHandler->addUniformArray(kFragment_GrShaderFlag, kHalf4_GrSLType,
                                                 "Kernel",
                                                 arrayCount);
    fKernelOffsetUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf2_GrSLType,
                                                  "KernelOffset");
    fGainUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf_GrSLType, "Gain");
    fBiasUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf_GrSLType, "Bias");

    const char* kernelOffset = uniformHandler->getUniformCStr(fKernelOffsetUni);
    const char* imgInc = uniformHandler->getUniformCStr(fImageIncrementUni);
    const char* kernel = uniformHandler->getUniformCStr(fKernelUni);
    const char* gain = uniformHandler->getUniformCStr(fGainUni);
    const char* bias = uniformHandler->getUniformCStr(fBiasUni);

    GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
    SkString coords2D = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]);
    fragBuilder->codeAppend("half4 sum = half4(0, 0, 0, 0);");
    fragBuilder->codeAppendf("float2 coord = %s - %s * %s;", coords2D.c_str(), kernelOffset, imgInc);
    fragBuilder->codeAppend("half4 c;");

    const char* kVecSuffix[4] = { ".x", ".y", ".z", ".w" };
    for (int y = 0; y < kHeight; y++) {
        for (int x = 0; x < kWidth; x++) {
            GrGLSLShaderBuilder::ShaderBlock block(fragBuilder);
            int offset = y*kWidth + x;

            fragBuilder->codeAppendf("half k = %s[%d]%s;", kernel, offset / 4,
                                     kVecSuffix[offset & 0x3]);
            SkString coord;
            coord.printf("coord + half2(%d, %d) * %s", x, y, imgInc);
            fDomain.sampleTexture(fragBuilder,
                                  uniformHandler,
                                  args.fShaderCaps,
                                  domain,
                                  "c",
                                  coord,
                                  args.fTexSamplers[0]);
            if (!mce.convolveAlpha()) {
                fragBuilder->codeAppend("c.rgb /= c.a;");
                fragBuilder->codeAppend("c.rgb = clamp(c.rgb, 0.0, 1.0);");
            }
            fragBuilder->codeAppend("sum += c * k;");
        }
    }
    if (mce.convolveAlpha()) {
        fragBuilder->codeAppendf("%s = sum * %s + %s;", args.fOutputColor, gain, bias);
        fragBuilder->codeAppendf("%s.a = clamp(%s.a, 0, 1);", args.fOutputColor, args.fOutputColor);
        fragBuilder->codeAppendf("%s.rgb = clamp(%s.rgb, 0.0, %s.a);",
                                 args.fOutputColor, args.fOutputColor, args.fOutputColor);
    } else {
        fDomain.sampleTexture(fragBuilder,
                              uniformHandler,
                              args.fShaderCaps,
                              domain,
                              "c",
                              coords2D,
                              args.fTexSamplers[0]);
        fragBuilder->codeAppendf("%s.a = c.a;", args.fOutputColor);
        fragBuilder->codeAppendf("%s.rgb = clamp(sum.rgb * %s + %s, 0, 1);", args.fOutputColor, gain, bias);
        fragBuilder->codeAppendf("%s.rgb *= %s.a;", args.fOutputColor, args.fOutputColor);
    }
    fragBuilder->codeAppendf("%s *= %s;\n", args.fOutputColor, args.fInputColor);
}

void GrGLMatrixConvolutionEffect::GenKey(const GrProcessor& processor,
                                         const GrShaderCaps&, GrProcessorKeyBuilder* b) {
    const GrMatrixConvolutionEffect& m = processor.cast<GrMatrixConvolutionEffect>();
    SkASSERT(m.kernelSize().width() <= 0x7FFF && m.kernelSize().height() <= 0xFFFF);
    uint32_t key = m.kernelSize().width() << 16 | m.kernelSize().height();
    key |= m.convolveAlpha() ? 1U << 31 : 0;
    b->add32(key);
    b->add32(GrTextureDomain::GLDomain::DomainKey(m.domain()));
}

void GrGLMatrixConvolutionEffect::onSetData(const GrGLSLProgramDataManager& pdman,
                                            const GrFragmentProcessor& processor) {
    const GrMatrixConvolutionEffect& conv = processor.cast<GrMatrixConvolutionEffect>();
    GrSurfaceProxy* proxy = conv.textureSampler(0).proxy();
    GrTexture* texture = proxy->priv().peekTexture();

    float imageIncrement[2];
    float ySign = proxy->origin() == kTopLeft_GrSurfaceOrigin ? 1.0f : -1.0f;
    imageIncrement[0] = 1.0f / texture->width();
    imageIncrement[1] = ySign / texture->height();
    pdman.set2fv(fImageIncrementUni, 1, imageIncrement);
    pdman.set2fv(fKernelOffsetUni, 1, conv.kernelOffset());
    int kernelCount = conv.kernelSize().width() * conv.kernelSize().height();
    int arrayCount = (kernelCount + 3) / 4;
    SkASSERT(4 * arrayCount >= kernelCount);
    pdman.set4fv(fKernelUni, arrayCount, conv.kernel());
    pdman.set1f(fGainUni, conv.gain());
    pdman.set1f(fBiasUni, conv.bias());
    fDomain.setData(pdman, conv.domain(), proxy);
}

GrMatrixConvolutionEffect::GrMatrixConvolutionEffect(sk_sp<GrTextureProxy> srcProxy,
                                                     const SkIRect& srcBounds,
                                                     const SkISize& kernelSize,
                                                     const SkScalar* kernel,
                                                     SkScalar gain,
                                                     SkScalar bias,
                                                     const SkIPoint& kernelOffset,
                                                     GrTextureDomain::Mode tileMode,
                                                     bool convolveAlpha)
        // To advertise either the modulation or opaqueness optimizations we'd have to examine the
        // parameters.
        : INHERITED(kGrMatrixConvolutionEffect_ClassID, kNone_OptimizationFlags)
        , fCoordTransform(srcProxy.get())
        , fDomain(srcProxy.get(),
                  GrTextureDomain::MakeTexelDomainForMode(srcBounds, tileMode),
                  tileMode)
        , fTextureSampler(std::move(srcProxy))
        , fKernelSize(kernelSize)
        , fGain(SkScalarToFloat(gain))
        , fBias(SkScalarToFloat(bias) / 255.0f)
        , fConvolveAlpha(convolveAlpha) {
    this->addCoordTransform(&fCoordTransform);
    this->setTextureSamplerCnt(1);
    for (int i = 0; i < kernelSize.width() * kernelSize.height(); i++) {
        fKernel[i] = SkScalarToFloat(kernel[i]);
    }
    fKernelOffset[0] = static_cast<float>(kernelOffset.x());
    fKernelOffset[1] = static_cast<float>(kernelOffset.y());
}

GrMatrixConvolutionEffect::GrMatrixConvolutionEffect(const GrMatrixConvolutionEffect& that)
        : INHERITED(kGrMatrixConvolutionEffect_ClassID, kNone_OptimizationFlags)
        , fCoordTransform(that.fCoordTransform)
        , fDomain(that.fDomain)
        , fTextureSampler(that.fTextureSampler)
        , fKernelSize(that.fKernelSize)
        , fGain(that.fGain)
        , fBias(that.fBias)
        , fConvolveAlpha(that.fConvolveAlpha) {
    this->addCoordTransform(&fCoordTransform);
    this->setTextureSamplerCnt(1);
    memcpy(fKernel, that.fKernel, sizeof(float) * fKernelSize.width() * fKernelSize.height());
    memcpy(fKernelOffset, that.fKernelOffset, sizeof(fKernelOffset));
}

std::unique_ptr<GrFragmentProcessor> GrMatrixConvolutionEffect::clone() const {
    return std::unique_ptr<GrFragmentProcessor>(new GrMatrixConvolutionEffect(*this));
}

void GrMatrixConvolutionEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps,
                                                      GrProcessorKeyBuilder* b) const {
    GrGLMatrixConvolutionEffect::GenKey(*this, caps, b);
}

GrGLSLFragmentProcessor* GrMatrixConvolutionEffect::onCreateGLSLInstance() const  {
    return new GrGLMatrixConvolutionEffect;
}

bool GrMatrixConvolutionEffect::onIsEqual(const GrFragmentProcessor& sBase) const {
    const GrMatrixConvolutionEffect& s = sBase.cast<GrMatrixConvolutionEffect>();
    return fKernelSize == s.kernelSize() &&
           !memcmp(fKernel, s.kernel(),
                   fKernelSize.width() * fKernelSize.height() * sizeof(float)) &&
           fGain == s.gain() &&
           fBias == s.bias() &&
           !memcmp(fKernelOffset, s.kernelOffset(), sizeof(fKernelOffset)) &&
           fConvolveAlpha == s.convolveAlpha() &&
           fDomain == s.domain();
}

static void fill_in_1D_gaussian_kernel_with_stride(float* kernel, int size, int stride,
                                                   float twoSigmaSqrd) {
    SkASSERT(!SkScalarNearlyZero(twoSigmaSqrd, SK_ScalarNearlyZero));

    const float sigmaDenom = 1.0f / twoSigmaSqrd;
    const int radius = size / 2;

    float sum = 0.0f;
    for (int i = 0; i < size; ++i) {
        float term = static_cast<float>(i - radius);
        // Note that the constant term (1/(sqrt(2*pi*sigma^2)) of the Gaussian
        // is dropped here, since we renormalize the kernel below.
        kernel[i * stride] = sk_float_exp(-term * term * sigmaDenom);
        sum += kernel[i * stride];
    }
    // Normalize the kernel
    float scale = 1.0f / sum;
    for (int i = 0; i < size; ++i) {
        kernel[i * stride] *= scale;
    }
}

static void fill_in_2D_gaussian_kernel(float* kernel, int width, int height,
                                       SkScalar sigmaX, SkScalar sigmaY) {
    SkASSERT(width * height <= MAX_KERNEL_SIZE);
    const float twoSigmaSqrdX = 2.0f * SkScalarToFloat(SkScalarSquare(sigmaX));
    const float twoSigmaSqrdY = 2.0f * SkScalarToFloat(SkScalarSquare(sigmaY));

    // TODO: in all of these degenerate cases we're uploading (and using) a whole lot of zeros.
    if (SkScalarNearlyZero(twoSigmaSqrdX, SK_ScalarNearlyZero) ||
        SkScalarNearlyZero(twoSigmaSqrdY, SK_ScalarNearlyZero)) {
        // In this case the 2D Gaussian degenerates to a 1D Gaussian (in X or Y) or a point
        SkASSERT(3 == width || 3 == height);
        memset(kernel, 0, width*height*sizeof(float));

        if (SkScalarNearlyZero(twoSigmaSqrdX, SK_ScalarNearlyZero) &&
            SkScalarNearlyZero(twoSigmaSqrdY, SK_ScalarNearlyZero)) {
            // A point
            SkASSERT(3 == width && 3 == height);
            kernel[4] = 1.0f;
        } else if (SkScalarNearlyZero(twoSigmaSqrdX, SK_ScalarNearlyZero)) {
            // A 1D Gaussian in Y
            SkASSERT(3 == width);
            // Down the middle column of the kernel with a stride of width
            fill_in_1D_gaussian_kernel_with_stride(&kernel[1], height, width, twoSigmaSqrdY);
        } else {
            // A 1D Gaussian in X
            SkASSERT(SkScalarNearlyZero(twoSigmaSqrdY, SK_ScalarNearlyZero));
            SkASSERT(3 == height);
            // Down the middle row of the kernel with a stride of 1
            fill_in_1D_gaussian_kernel_with_stride(&kernel[width], width, 1, twoSigmaSqrdX);
        }
        return;
    }

    const float sigmaXDenom = 1.0f / twoSigmaSqrdX;
    const float sigmaYDenom = 1.0f / twoSigmaSqrdY;
    const int xRadius = width / 2;
    const int yRadius = height / 2;

    float sum = 0.0f;
    for (int x = 0; x < width; x++) {
        float xTerm = static_cast<float>(x - xRadius);
        xTerm = xTerm * xTerm * sigmaXDenom;
        for (int y = 0; y < height; y++) {
            float yTerm = static_cast<float>(y - yRadius);
            float xyTerm = sk_float_exp(-(xTerm + yTerm * yTerm * sigmaYDenom));
            // Note that the constant term (1/(sqrt(2*pi*sigma^2)) of the Gaussian
            // is dropped here, since we renormalize the kernel below.
            kernel[y * width + x] = xyTerm;
            sum += xyTerm;
        }
    }
    // Normalize the kernel
    float scale = 1.0f / sum;
    for (int i = 0; i < width * height; ++i) {
        kernel[i] *= scale;
    }
}

// Static function to create a 2D convolution
std::unique_ptr<GrFragmentProcessor> GrMatrixConvolutionEffect::MakeGaussian(
        sk_sp<GrTextureProxy> srcProxy,
        const SkIRect& srcBounds,
        const SkISize& kernelSize,
        SkScalar gain,
        SkScalar bias,
        const SkIPoint& kernelOffset,
        GrTextureDomain::Mode tileMode,
        bool convolveAlpha,
        SkScalar sigmaX,
        SkScalar sigmaY) {
    float kernel[MAX_KERNEL_SIZE];

    fill_in_2D_gaussian_kernel(kernel, kernelSize.width(), kernelSize.height(), sigmaX, sigmaY);

    return std::unique_ptr<GrFragmentProcessor>(
            new GrMatrixConvolutionEffect(std::move(srcProxy), srcBounds, kernelSize, kernel,
                                          gain, bias, kernelOffset, tileMode, convolveAlpha));
}

GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrMatrixConvolutionEffect);

#if GR_TEST_UTILS
std::unique_ptr<GrFragmentProcessor> GrMatrixConvolutionEffect::TestCreate(GrProcessorTestData* d) {
    int texIdx = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx
                                        : GrProcessorUnitTest::kAlphaTextureIdx;
    sk_sp<GrTextureProxy> proxy = d->textureProxy(texIdx);

    int width = d->fRandom->nextRangeU(1, MAX_KERNEL_SIZE);
    int height = d->fRandom->nextRangeU(1, MAX_KERNEL_SIZE / width);
    SkISize kernelSize = SkISize::Make(width, height);
    std::unique_ptr<SkScalar[]> kernel(new SkScalar[width * height]);
    for (int i = 0; i < width * height; i++) {
        kernel.get()[i] = d->fRandom->nextSScalar1();
    }
    SkScalar gain = d->fRandom->nextSScalar1();
    SkScalar bias = d->fRandom->nextSScalar1();
    SkIPoint kernelOffset = SkIPoint::Make(d->fRandom->nextRangeU(0, kernelSize.width()),
                                           d->fRandom->nextRangeU(0, kernelSize.height()));
    SkIRect bounds = SkIRect::MakeXYWH(d->fRandom->nextRangeU(0, proxy->width()),
                                       d->fRandom->nextRangeU(0, proxy->height()),
                                       d->fRandom->nextRangeU(0, proxy->width()),
                                       d->fRandom->nextRangeU(0, proxy->height()));
    GrTextureDomain::Mode tileMode =
            static_cast<GrTextureDomain::Mode>(d->fRandom->nextRangeU(0, 2));
    bool convolveAlpha = d->fRandom->nextBool();
    return GrMatrixConvolutionEffect::Make(std::move(proxy),
                                           bounds,
                                           kernelSize,
                                           kernel.get(),
                                           gain,
                                           bias,
                                           kernelOffset,
                                           tileMode,
                                           convolveAlpha);
}
#endif