1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
|
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
layout(key) in int edgeType;
in half2 center;
in half2 radii;
half2 prevCenter;
half2 prevRadii = half2(-1);
// The ellipse uniform is (center.x, center.y, 1 / rx^2, 1 / ry^2)
// The last two terms can underflow with halfs, so we use floats.
uniform highfloat4 ellipse;
bool useScale = sk_Caps.floatPrecisionVaries;
layout(when=useScale) uniform half2 scale;
@optimizationFlags { kCompatibleWithCoverageAsAlpha_OptimizationFlag }
@setData(pdman) {
if (radii != prevRadii || center != prevCenter) {
float invRXSqd;
float invRYSqd;
// If we're using a scale factor to work around precision issues, choose the larger radius
// as the scale factor. The inv radii need to be pre-adjusted by the scale factor.
if (scale.isValid()) {
if (radii.fX > radii.fY) {
invRXSqd = 1.f;
invRYSqd = (radii.fX * radii.fX) /
(radii.fY * radii.fY);
pdman.set2f(scale, radii.fX, 1.f / radii.fX);
} else {
invRXSqd = (radii.fY * radii.fY) /
(radii.fX * radii.fX);
invRYSqd = 1.f;
pdman.set2f(scale, radii.fY, 1.f / radii.fY);
}
} else {
invRXSqd = 1.f / (radii.fX * radii.fX);
invRYSqd = 1.f / (radii.fY * radii.fY);
}
pdman.set4f(ellipse, center.fX, center.fY, invRXSqd, invRYSqd);
prevCenter = center;
prevRadii = radii;
}
}
void main() {
// d is the offset to the ellipse center
half2 d = sk_FragCoord.xy - ellipse.xy;
// If we're on a device with a "real" mediump then we'll do the distance computation in a space
// that is normalized by the larger radius. The scale uniform will be scale, 1/scale. The
// inverse squared radii uniform values are already in this normalized space. The center is
// not.
@if (useScale) {
d *= scale.y;
}
half2 Z = d * ellipse.zw;
// implicit is the evaluation of (x/rx)^2 + (y/ry)^2 - 1.
half implicit = dot(Z, d) - 1;
// grad_dot is the squared length of the gradient of the implicit.
half grad_dot = 4 * dot(Z, Z);
// Avoid calling inversesqrt on zero.
grad_dot = max(grad_dot, 1e-4);
half approx_dist = implicit * inversesqrt(grad_dot);
@if (useScale) {
approx_dist *= scale.x;
}
half alpha;
@switch (edgeType) {
case 0 /* kFillBW_GrProcessorEdgeType */:
alpha = approx_dist > 0.0 ? 0.0 : 1.0;
break;
case 1 /* kFillAA_GrProcessorEdgeType */:
alpha = clamp(0.5 - approx_dist, 0.0, 1.0);
break;
case 2 /* kInverseFillBW_GrProcessorEdgeType */:
alpha = approx_dist > 0.0 ? 1.0 : 0.0;
break;
case 3 /* kInverseFillAA_GrProcessorEdgeType */:
alpha = clamp(0.5 + approx_dist, 0.0, 1.0);
break;
default:
// hairline not supported
discard;
}
sk_OutColor = sk_InColor * alpha;
}
@test(testData) {
SkPoint center;
center.fX = testData->fRandom->nextRangeScalar(0.f, 1000.f);
center.fY = testData->fRandom->nextRangeScalar(0.f, 1000.f);
SkScalar rx = testData->fRandom->nextRangeF(0.f, 1000.f);
SkScalar ry = testData->fRandom->nextRangeF(0.f, 1000.f);
GrPrimitiveEdgeType et;
do {
et = (GrPrimitiveEdgeType) testData->fRandom->nextULessThan(kGrProcessorEdgeTypeCnt);
} while (kHairlineAA_GrProcessorEdgeType == et);
return GrEllipseEffect::Make(et, center, SkPoint::Make(rx, ry));
}
|