aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/effects/GrConvexPolyEffect.cpp
blob: a64e5cb49036840de8f91f09bd7bf9d4b0b817b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
/*
 * Copyright 2014 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "GrConvexPolyEffect.h"
#include "GrInvariantOutput.h"
#include "SkPathPriv.h"
#include "effects/GrConstColorProcessor.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"
#include "../private/GrGLSL.h"

//////////////////////////////////////////////////////////////////////////////
class AARectEffect : public GrFragmentProcessor {
public:
    const SkRect& getRect() const { return fRect; }

    static sk_sp<GrFragmentProcessor> Make(GrPrimitiveEdgeType edgeType, const SkRect& rect) {
        return sk_sp<GrFragmentProcessor>(new AARectEffect(edgeType, rect));
    }

    GrPrimitiveEdgeType getEdgeType() const { return fEdgeType; }

    const char* name() const override { return "AARect"; }

    void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override;

private:
    AARectEffect(GrPrimitiveEdgeType edgeType, const SkRect& rect)
        : fRect(rect), fEdgeType(edgeType) {
        this->initClassID<AARectEffect>();
        this->setWillReadFragmentPosition();
    }

    GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;

    bool onIsEqual(const GrFragmentProcessor& other) const override {
        const AARectEffect& aare = other.cast<AARectEffect>();
        return fRect == aare.fRect;
    }

    void onComputeInvariantOutput(GrInvariantOutput* inout) const override {
        if (fRect.isEmpty()) {
            // An empty rect will have no coverage anywhere.
            inout->mulByKnownSingleComponent(0);
        } else {
            inout->mulByUnknownSingleComponent();
        }
    }

    SkRect              fRect;
    GrPrimitiveEdgeType fEdgeType;

    typedef GrFragmentProcessor INHERITED;

    GR_DECLARE_FRAGMENT_PROCESSOR_TEST;

};

GR_DEFINE_FRAGMENT_PROCESSOR_TEST(AARectEffect);

sk_sp<GrFragmentProcessor> AARectEffect::TestCreate(GrProcessorTestData* d) {
    SkRect rect = SkRect::MakeLTRB(d->fRandom->nextSScalar1(),
                                   d->fRandom->nextSScalar1(),
                                   d->fRandom->nextSScalar1(),
                                   d->fRandom->nextSScalar1());
    sk_sp<GrFragmentProcessor> fp;
    do {
        GrPrimitiveEdgeType edgeType = static_cast<GrPrimitiveEdgeType>(
                d->fRandom->nextULessThan(kGrProcessorEdgeTypeCnt));

        fp = AARectEffect::Make(edgeType, rect);
    } while (nullptr == fp);
    return fp;
}

//////////////////////////////////////////////////////////////////////////////

class GLAARectEffect : public GrGLSLFragmentProcessor {
public:
    GLAARectEffect() {
        fPrevRect.fLeft = SK_ScalarNaN;
    }

    void emitCode(EmitArgs&) override;

    static inline void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder*);

protected:
    void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override;

private:
    GrGLSLProgramDataManager::UniformHandle fRectUniform;
    SkRect                                  fPrevRect;

    typedef GrGLSLFragmentProcessor INHERITED;
};

void GLAARectEffect::emitCode(EmitArgs& args) {
    const AARectEffect& aare = args.fFp.cast<AARectEffect>();
    const char *rectName;
    // The rect uniform's xyzw refer to (left + 0.5, top + 0.5, right - 0.5, bottom - 0.5),
    // respectively.
    fRectUniform = args.fUniformHandler->addUniform(kFragment_GrShaderFlag,
                                                    kVec4f_GrSLType,
                                                    kDefault_GrSLPrecision,
                                                    "rect",
                                                    &rectName);

    GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
    const char* fragmentPos = fragBuilder->fragmentPosition();
    if (GrProcessorEdgeTypeIsAA(aare.getEdgeType())) {
        // The amount of coverage removed in x and y by the edges is computed as a pair of negative
        // numbers, xSub and ySub.
        fragBuilder->codeAppend("\t\tfloat xSub, ySub;\n");
        fragBuilder->codeAppendf("\t\txSub = min(%s.x - %s.x, 0.0);\n", fragmentPos, rectName);
        fragBuilder->codeAppendf("\t\txSub += min(%s.z - %s.x, 0.0);\n", rectName, fragmentPos);
        fragBuilder->codeAppendf("\t\tySub = min(%s.y - %s.y, 0.0);\n", fragmentPos, rectName);
        fragBuilder->codeAppendf("\t\tySub += min(%s.w - %s.y, 0.0);\n", rectName, fragmentPos);
        // Now compute coverage in x and y and multiply them to get the fraction of the pixel
        // covered.
        fragBuilder->codeAppendf("\t\tfloat alpha = (1.0 + max(xSub, -1.0)) * (1.0 + max(ySub, -1.0));\n");
    } else {
        fragBuilder->codeAppendf("\t\tfloat alpha = 1.0;\n");
        fragBuilder->codeAppendf("\t\talpha *= (%s.x - %s.x) > -0.5 ? 1.0 : 0.0;\n", fragmentPos, rectName);
        fragBuilder->codeAppendf("\t\talpha *= (%s.z - %s.x) > -0.5 ? 1.0 : 0.0;\n", rectName, fragmentPos);
        fragBuilder->codeAppendf("\t\talpha *= (%s.y - %s.y) > -0.5 ? 1.0 : 0.0;\n", fragmentPos, rectName);
        fragBuilder->codeAppendf("\t\talpha *= (%s.w - %s.y) > -0.5 ? 1.0 : 0.0;\n", rectName, fragmentPos);
    }

    if (GrProcessorEdgeTypeIsInverseFill(aare.getEdgeType())) {
        fragBuilder->codeAppend("\t\talpha = 1.0 - alpha;\n");
    }
    fragBuilder->codeAppendf("\t\t%s = %s;\n", args.fOutputColor,
                             (GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("alpha")).c_str());
}

void GLAARectEffect::onSetData(const GrGLSLProgramDataManager& pdman,
                               const GrProcessor& processor) {
    const AARectEffect& aare = processor.cast<AARectEffect>();
    const SkRect& rect = aare.getRect();
    if (rect != fPrevRect) {
        pdman.set4f(fRectUniform, rect.fLeft + 0.5f, rect.fTop + 0.5f,
                   rect.fRight - 0.5f, rect.fBottom - 0.5f);
        fPrevRect = rect;
    }
}

void GLAARectEffect::GenKey(const GrProcessor& processor, const GrShaderCaps&,
                            GrProcessorKeyBuilder* b) {
    const AARectEffect& aare = processor.cast<AARectEffect>();
    b->add32(aare.getEdgeType());
}

void AARectEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const {
    GLAARectEffect::GenKey(*this, caps, b);
}

GrGLSLFragmentProcessor* AARectEffect::onCreateGLSLInstance() const  {
    return new GLAARectEffect;
}

//////////////////////////////////////////////////////////////////////////////

class GrGLConvexPolyEffect : public GrGLSLFragmentProcessor {
public:
    GrGLConvexPolyEffect() {
        fPrevEdges[0] = SK_ScalarNaN;
    }

    void emitCode(EmitArgs&) override;

    static inline void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder*);

protected:
    void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override;

private:
    GrGLSLProgramDataManager::UniformHandle fEdgeUniform;
    SkScalar                                fPrevEdges[3 * GrConvexPolyEffect::kMaxEdges];
    typedef GrGLSLFragmentProcessor INHERITED;
};

void GrGLConvexPolyEffect::emitCode(EmitArgs& args) {
    const GrConvexPolyEffect& cpe = args.fFp.cast<GrConvexPolyEffect>();

    const char *edgeArrayName;
    fEdgeUniform = args.fUniformHandler->addUniformArray(kFragment_GrShaderFlag,
                                                         kVec3f_GrSLType,
                                                         kDefault_GrSLPrecision,
                                                         "edges",
                                                         cpe.getEdgeCount(),
                                                         &edgeArrayName);
    GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
    fragBuilder->codeAppend("\t\tfloat alpha = 1.0;\n");
    fragBuilder->codeAppend("\t\tfloat edge;\n");
    const char* fragmentPos = fragBuilder->fragmentPosition();
    for (int i = 0; i < cpe.getEdgeCount(); ++i) {
        fragBuilder->codeAppendf("\t\tedge = dot(%s[%d], vec3(%s.x, %s.y, 1));\n",
                                 edgeArrayName, i, fragmentPos, fragmentPos);
        if (GrProcessorEdgeTypeIsAA(cpe.getEdgeType())) {
            fragBuilder->codeAppend("\t\tedge = clamp(edge, 0.0, 1.0);\n");
        } else {
            fragBuilder->codeAppend("\t\tedge = edge >= 0.5 ? 1.0 : 0.0;\n");
        }
        fragBuilder->codeAppend("\t\talpha *= edge;\n");
    }

    if (GrProcessorEdgeTypeIsInverseFill(cpe.getEdgeType())) {
        fragBuilder->codeAppend("\talpha = 1.0 - alpha;\n");
    }
    fragBuilder->codeAppendf("\t%s = %s;\n", args.fOutputColor,
                             (GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("alpha")).c_str());
}

void GrGLConvexPolyEffect::onSetData(const GrGLSLProgramDataManager& pdman,
                                     const GrProcessor& effect) {
    const GrConvexPolyEffect& cpe = effect.cast<GrConvexPolyEffect>();
    size_t byteSize = 3 * cpe.getEdgeCount() * sizeof(SkScalar);
    if (0 != memcmp(fPrevEdges, cpe.getEdges(), byteSize)) {
        pdman.set3fv(fEdgeUniform, cpe.getEdgeCount(), cpe.getEdges());
        memcpy(fPrevEdges, cpe.getEdges(), byteSize);
    }
}

void GrGLConvexPolyEffect::GenKey(const GrProcessor& processor, const GrShaderCaps&,
                                  GrProcessorKeyBuilder* b) {
    const GrConvexPolyEffect& cpe = processor.cast<GrConvexPolyEffect>();
    GR_STATIC_ASSERT(kGrProcessorEdgeTypeCnt <= 8);
    uint32_t key = (cpe.getEdgeCount() << 3) | cpe.getEdgeType();
    b->add32(key);
}

//////////////////////////////////////////////////////////////////////////////

sk_sp<GrFragmentProcessor> GrConvexPolyEffect::Make(GrPrimitiveEdgeType type, const SkPath& path,
                                                    const SkVector* offset) {
    if (kHairlineAA_GrProcessorEdgeType == type) {
        return nullptr;
    }
    if (path.getSegmentMasks() != SkPath::kLine_SegmentMask ||
        !path.isConvex()) {
        return nullptr;
    }

    SkPathPriv::FirstDirection dir;
    // The only way this should fail is if the clip is effectively a infinitely thin line. In that
    // case nothing is inside the clip. It'd be nice to detect this at a higher level and either
    // skip the draw or omit the clip element.
    if (!SkPathPriv::CheapComputeFirstDirection(path, &dir)) {
        if (GrProcessorEdgeTypeIsInverseFill(type)) {
            return GrConstColorProcessor::Make(GrColor4f::OpaqueWhite(),
                                               GrConstColorProcessor::kModulateRGBA_InputMode);
        }
        return GrConstColorProcessor::Make(GrColor4f::TransparentBlack(),
                                           GrConstColorProcessor::kIgnore_InputMode);
    }

    SkVector t;
    if (nullptr == offset) {
        t.set(0, 0);
    } else {
        t = *offset;
    }

    SkScalar        edges[3 * kMaxEdges];
    SkPoint         pts[4];
    SkPath::Verb    verb;
    SkPath::Iter    iter(path, true);

    // SkPath considers itself convex so long as there is a convex contour within it,
    // regardless of any degenerate contours such as a string of moveTos before it.
    // Iterate here to consume any degenerate contours and only process the points
    // on the actual convex contour.
    int n = 0;
    while ((verb = iter.next(pts, true, true)) != SkPath::kDone_Verb) {
        switch (verb) {
            case SkPath::kMove_Verb:
                SkASSERT(n == 0);
            case SkPath::kClose_Verb:
                break;
            case SkPath::kLine_Verb: {
                if (n >= kMaxEdges) {
                    return nullptr;
                }
                SkVector v = pts[1] - pts[0];
                v.normalize();
                if (SkPathPriv::kCCW_FirstDirection == dir) {
                    edges[3 * n] = v.fY;
                    edges[3 * n + 1] = -v.fX;
                } else {
                    edges[3 * n] = -v.fY;
                    edges[3 * n + 1] = v.fX;
                }
                SkPoint p = pts[1] + t;
                edges[3 * n + 2] = -(edges[3 * n] * p.fX + edges[3 * n + 1] * p.fY);
                ++n;
                break;
            }
            default:
                return nullptr;
        }
    }

    if (path.isInverseFillType()) {
        type = GrInvertProcessorEdgeType(type);
    }
    return Make(type, n, edges);
}

sk_sp<GrFragmentProcessor> GrConvexPolyEffect::Make(GrPrimitiveEdgeType edgeType,
                                                    const SkRect& rect) {
    if (kHairlineAA_GrProcessorEdgeType == edgeType){
        return nullptr;
    }
    return AARectEffect::Make(edgeType, rect);
}

GrConvexPolyEffect::~GrConvexPolyEffect() {}

void GrConvexPolyEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const {
    inout->mulByUnknownSingleComponent();
}

void GrConvexPolyEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps,
                                               GrProcessorKeyBuilder* b) const {
    GrGLConvexPolyEffect::GenKey(*this, caps, b);
}

GrGLSLFragmentProcessor* GrConvexPolyEffect::onCreateGLSLInstance() const  {
    return new GrGLConvexPolyEffect;
}

GrConvexPolyEffect::GrConvexPolyEffect(GrPrimitiveEdgeType edgeType, int n, const SkScalar edges[])
    : fEdgeType(edgeType)
    , fEdgeCount(n) {
    this->initClassID<GrConvexPolyEffect>();
    // Factory function should have already ensured this.
    SkASSERT(n <= kMaxEdges);
    memcpy(fEdges, edges, 3 * n * sizeof(SkScalar));
    // Outset the edges by 0.5 so that a pixel with center on an edge is 50% covered in the AA case
    // and 100% covered in the non-AA case.
    for (int i = 0; i < n; ++i) {
        fEdges[3 * i + 2] += SK_ScalarHalf;
    }
    this->setWillReadFragmentPosition();
}

bool GrConvexPolyEffect::onIsEqual(const GrFragmentProcessor& other) const {
    const GrConvexPolyEffect& cpe = other.cast<GrConvexPolyEffect>();
    // ignore the fact that 0 == -0 and just use memcmp.
    return (cpe.fEdgeType == fEdgeType && cpe.fEdgeCount == fEdgeCount &&
            0 == memcmp(cpe.fEdges, fEdges, 3 * fEdgeCount * sizeof(SkScalar)));
}

//////////////////////////////////////////////////////////////////////////////

GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrConvexPolyEffect);

sk_sp<GrFragmentProcessor> GrConvexPolyEffect::TestCreate(GrProcessorTestData* d) {
    int count = d->fRandom->nextULessThan(kMaxEdges) + 1;
    SkScalar edges[kMaxEdges * 3];
    for (int i = 0; i < 3 * count; ++i) {
        edges[i] = d->fRandom->nextSScalar1();
    }

    sk_sp<GrFragmentProcessor> fp;
    do {
        GrPrimitiveEdgeType edgeType = static_cast<GrPrimitiveEdgeType>(
                d->fRandom->nextULessThan(kGrProcessorEdgeTypeCnt));
        fp = GrConvexPolyEffect::Make(edgeType, count, edges);
    } while (nullptr == fp);
    return fp;
}