1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
|
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrBezierEffect_DEFINED
#define GrBezierEffect_DEFINED
#include "GrCaps.h"
#include "GrProcessor.h"
#include "GrGeometryProcessor.h"
#include "GrTypesPriv.h"
/**
* Shader is based off of Loop-Blinn Quadratic GPU Rendering
* The output of this effect is a hairline edge for conics.
* Conics specified by implicit equation K^2 - LM.
* K, L, and M, are the first three values of the vertex attribute,
* the fourth value is not used. Distance is calculated using a
* first order approximation from the taylor series.
* Coverage for AA is max(0, 1-distance).
*
* Test were also run using a second order distance approximation.
* There were two versions of the second order approx. The first version
* is of roughly the form:
* f(q) = |f(p)| - ||f'(p)||*||q-p|| - ||f''(p)||*||q-p||^2.
* The second is similar:
* f(q) = |f(p)| + ||f'(p)||*||q-p|| + ||f''(p)||*||q-p||^2.
* The exact version of the equations can be found in the paper
* "Distance Approximations for Rasterizing Implicit Curves" by Gabriel Taubin
*
* In both versions we solve the quadratic for ||q-p||.
* Version 1:
* gFM is magnitude of first partials and gFM2 is magnitude of 2nd partials (as derived from paper)
* builder->fsCodeAppend("\t\tedgeAlpha = (sqrt(gFM*gFM+4.0*func*gF2M) - gFM)/(2.0*gF2M);\n");
* Version 2:
* builder->fsCodeAppend("\t\tedgeAlpha = (gFM - sqrt(gFM*gFM-4.0*func*gF2M))/(2.0*gF2M);\n");
*
* Also note that 2nd partials of k,l,m are zero
*
* When comparing the two second order approximations to the first order approximations,
* the following results were found. Version 1 tends to underestimate the distances, thus it
* basically increases all the error that we were already seeing in the first order
* approx. So this version is not the one to use. Version 2 has the opposite effect
* and tends to overestimate the distances. This is much closer to what we are
* looking for. It is able to render ellipses (even thin ones) without the need to chop.
* However, it can not handle thin hyperbolas well and thus would still rely on
* chopping to tighten the clipping. Another side effect of the overestimating is
* that the curves become much thinner and "ropey". If all that was ever rendered
* were "not too thin" curves and ellipses then 2nd order may have an advantage since
* only one geometry would need to be rendered. However no benches were run comparing
* chopped first order and non chopped 2nd order.
*/
class GrGLConicEffect;
class GrConicEffect : public GrGeometryProcessor {
public:
static sk_sp<GrGeometryProcessor> Make(GrColor color,
const SkMatrix& viewMatrix,
const GrClipEdgeType edgeType,
const GrCaps& caps,
const SkMatrix& localMatrix,
bool usesLocalCoords,
uint8_t coverage = 0xff) {
switch (edgeType) {
case GrClipEdgeType::kFillAA:
if (!caps.shaderCaps()->shaderDerivativeSupport()) {
return nullptr;
}
return sk_sp<GrGeometryProcessor>(
new GrConicEffect(color, viewMatrix, coverage, GrClipEdgeType::kFillAA,
localMatrix, usesLocalCoords));
case GrClipEdgeType::kHairlineAA:
if (!caps.shaderCaps()->shaderDerivativeSupport()) {
return nullptr;
}
return sk_sp<GrGeometryProcessor>(
new GrConicEffect(color, viewMatrix, coverage,
GrClipEdgeType::kHairlineAA, localMatrix,
usesLocalCoords));
case GrClipEdgeType::kFillBW:
return sk_sp<GrGeometryProcessor>(
new GrConicEffect(color, viewMatrix, coverage, GrClipEdgeType::kFillBW,
localMatrix, usesLocalCoords));
default:
return nullptr;
}
}
~GrConicEffect() override;
const char* name() const override { return "Conic"; }
inline const Attribute* inPosition() const { return fInPosition; }
inline const Attribute* inConicCoeffs() const { return fInConicCoeffs; }
inline bool isAntiAliased() const { return GrProcessorEdgeTypeIsAA(fEdgeType); }
inline bool isFilled() const { return GrProcessorEdgeTypeIsFill(fEdgeType); }
inline GrClipEdgeType getEdgeType() const { return fEdgeType; }
GrColor color() const { return fColor; }
const SkMatrix& viewMatrix() const { return fViewMatrix; }
const SkMatrix& localMatrix() const { return fLocalMatrix; }
bool usesLocalCoords() const { return fUsesLocalCoords; }
uint8_t coverageScale() const { return fCoverageScale; }
void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override;
GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const override;
private:
GrConicEffect(GrColor, const SkMatrix& viewMatrix, uint8_t coverage, GrClipEdgeType,
const SkMatrix& localMatrix, bool usesLocalCoords);
GrColor fColor;
SkMatrix fViewMatrix;
SkMatrix fLocalMatrix;
bool fUsesLocalCoords;
uint8_t fCoverageScale;
GrClipEdgeType fEdgeType;
const Attribute* fInPosition;
const Attribute* fInConicCoeffs;
GR_DECLARE_GEOMETRY_PROCESSOR_TEST
typedef GrGeometryProcessor INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
/**
* The output of this effect is a hairline edge for quadratics.
* Quadratic specified by 0=u^2-v canonical coords. u and v are the first
* two components of the vertex attribute. At the three control points that define
* the Quadratic, u, v have the values {0,0}, {1/2, 0}, and {1, 1} respectively.
* Coverage for AA is min(0, 1-distance). 3rd & 4th cimponent unused.
* Requires shader derivative instruction support.
*/
class GrGLQuadEffect;
class GrQuadEffect : public GrGeometryProcessor {
public:
static sk_sp<GrGeometryProcessor> Make(GrColor color,
const SkMatrix& viewMatrix,
const GrClipEdgeType edgeType,
const GrCaps& caps,
const SkMatrix& localMatrix,
bool usesLocalCoords,
uint8_t coverage = 0xff) {
switch (edgeType) {
case GrClipEdgeType::kFillAA:
if (!caps.shaderCaps()->shaderDerivativeSupport()) {
return nullptr;
}
return sk_sp<GrGeometryProcessor>(
new GrQuadEffect(color, viewMatrix, coverage, GrClipEdgeType::kFillAA,
localMatrix, usesLocalCoords));
case GrClipEdgeType::kHairlineAA:
if (!caps.shaderCaps()->shaderDerivativeSupport()) {
return nullptr;
}
return sk_sp<GrGeometryProcessor>(
new GrQuadEffect(color, viewMatrix, coverage,
GrClipEdgeType::kHairlineAA, localMatrix,
usesLocalCoords));
case GrClipEdgeType::kFillBW:
return sk_sp<GrGeometryProcessor>(
new GrQuadEffect(color, viewMatrix, coverage, GrClipEdgeType::kFillBW,
localMatrix, usesLocalCoords));
default:
return nullptr;
}
}
~GrQuadEffect() override;
const char* name() const override { return "Quad"; }
inline const Attribute* inPosition() const { return fInPosition; }
inline const Attribute* inHairQuadEdge() const { return fInHairQuadEdge; }
inline bool isAntiAliased() const { return GrProcessorEdgeTypeIsAA(fEdgeType); }
inline bool isFilled() const { return GrProcessorEdgeTypeIsFill(fEdgeType); }
inline GrClipEdgeType getEdgeType() const { return fEdgeType; }
GrColor color() const { return fColor; }
const SkMatrix& viewMatrix() const { return fViewMatrix; }
const SkMatrix& localMatrix() const { return fLocalMatrix; }
bool usesLocalCoords() const { return fUsesLocalCoords; }
uint8_t coverageScale() const { return fCoverageScale; }
void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override;
GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const override;
private:
GrQuadEffect(GrColor, const SkMatrix& viewMatrix, uint8_t coverage, GrClipEdgeType,
const SkMatrix& localMatrix, bool usesLocalCoords);
GrColor fColor;
SkMatrix fViewMatrix;
SkMatrix fLocalMatrix;
bool fUsesLocalCoords;
uint8_t fCoverageScale;
GrClipEdgeType fEdgeType;
const Attribute* fInPosition;
const Attribute* fInHairQuadEdge;
GR_DECLARE_GEOMETRY_PROCESSOR_TEST
typedef GrGeometryProcessor INHERITED;
};
//////////////////////////////////////////////////////////////////////////////
/**
* Shader is based off of "Resolution Independent Curve Rendering using
* Programmable Graphics Hardware" by Loop and Blinn.
* The output of this effect is a hairline edge for non rational cubics.
* Cubics are specified by implicit equation K^3 - LM.
* K, L, and M, are the first three values of the vertex attribute,
* the fourth value is not used. Distance is calculated using a
* first order approximation from the taylor series.
* Coverage for AA is max(0, 1-distance).
*/
class GrGLCubicEffect;
class GrCubicEffect : public GrGeometryProcessor {
public:
static sk_sp<GrGeometryProcessor> Make(GrColor color,
const SkMatrix& viewMatrix,
const SkMatrix& klm,
bool flipKL,
const GrClipEdgeType edgeType,
const GrCaps& caps) {
if (!caps.shaderCaps()->floatIs32Bits()) {
// Cubic math will be too unstable if the hardware doesn't support full fp32.
return nullptr;
}
// Map KLM to something that operates in device space.
SkMatrix devKLM;
if (!viewMatrix.invert(&devKLM)) {
return nullptr;
}
devKLM.postConcat(klm);
if (flipKL) {
devKLM.postScale(-1, -1);
}
switch (edgeType) {
case GrClipEdgeType::kFillAA:
return sk_sp<GrGeometryProcessor>(
new GrCubicEffect(color, viewMatrix, devKLM, GrClipEdgeType::kFillAA));
case GrClipEdgeType::kHairlineAA:
return sk_sp<GrGeometryProcessor>(
new GrCubicEffect(color, viewMatrix, devKLM, GrClipEdgeType::kHairlineAA));
case GrClipEdgeType::kFillBW:
return sk_sp<GrGeometryProcessor>(
new GrCubicEffect(color, viewMatrix, devKLM, GrClipEdgeType::kFillBW));
default:
return nullptr;
}
}
~GrCubicEffect() override;
const char* name() const override { return "Cubic"; }
inline const Attribute* inPosition() const { return fInPosition; }
inline bool isAntiAliased() const { return GrProcessorEdgeTypeIsAA(fEdgeType); }
inline bool isFilled() const { return GrProcessorEdgeTypeIsFill(fEdgeType); }
inline GrClipEdgeType getEdgeType() const { return fEdgeType; }
GrColor color() const { return fColor; }
bool colorIgnored() const { return GrColor_ILLEGAL == fColor; }
const SkMatrix& viewMatrix() const { return fViewMatrix; }
const SkMatrix& devKLMMatrix() const { return fDevKLMMatrix; }
void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override;
GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const override;
private:
GrCubicEffect(GrColor, const SkMatrix& viewMatrix, const SkMatrix& devKLMMatrix,
GrClipEdgeType);
GrColor fColor;
SkMatrix fViewMatrix;
SkMatrix fDevKLMMatrix;
GrClipEdgeType fEdgeType;
const Attribute* fInPosition;
GR_DECLARE_GEOMETRY_PROCESSOR_TEST
typedef GrGeometryProcessor INHERITED;
};
#endif
|