aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/ccpr/GrCCPathCache.cpp
blob: 7a00d35fd5b268dd5461bfa08f20f5d5edaa3c16 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
/*
 * Copyright 2018 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "GrCCPathCache.h"

#include "GrShape.h"
#include "SkNx.h"
#include "ccpr/GrCCPathParser.h"

// The maximum number of cache entries we allow in our own cache.
static constexpr int kMaxCacheCount = 1 << 16;

GrCCPathCache::MaskTransform::MaskTransform(const SkMatrix& m, SkIVector* shift)
        : fMatrix2x2{m.getScaleX(), m.getSkewX(), m.getSkewY(), m.getScaleY()} {
    SkASSERT(!m.hasPerspective());
#ifndef SK_BUILD_FOR_ANDROID_FRAMEWORK
    Sk2f translate = Sk2f(m.getTranslateX(), m.getTranslateY());
    Sk2f floor = translate.floor();
    (translate - floor).store(fSubpixelTranslate);
    shift->set((int)floor[0], (int)floor[1]);
    SkASSERT((float)shift->fX == floor[0]);
    SkASSERT((float)shift->fY == floor[1]);
#endif
}

inline static bool fuzzy_equals(const GrCCPathCache::MaskTransform& a,
                                const GrCCPathCache::MaskTransform& b) {
    if ((Sk4f::Load(a.fMatrix2x2) != Sk4f::Load(b.fMatrix2x2)).anyTrue()) {
        return false;
    }
#ifndef SK_BUILD_FOR_ANDROID_FRAMEWORK
    if (((Sk2f::Load(a.fSubpixelTranslate) -
          Sk2f::Load(b.fSubpixelTranslate)).abs() > 1.f/256).anyTrue()) {
        return false;
    }
#endif
    return true;
}

namespace {

// Produces a key that accounts both for a shape's path geometry, as well as any stroke/style.
class WriteStyledKey {
public:
    WriteStyledKey(const GrShape& shape)
        : fShapeUnstyledKeyCount(shape.unstyledKeySize())
        , fStyleKeyCount(
                GrStyle::KeySize(shape.style(), GrStyle::Apply::kPathEffectAndStrokeRec)) {}

    // Returns the total number of uint32_t's to allocate for the key.
    int allocCountU32() const { return 2 + fShapeUnstyledKeyCount + fStyleKeyCount; }

    // Writes the key to out[].
    void write(const GrShape& shape, uint32_t* out) {
        // How many bytes remain in the key, beginning on out[1]?
        out[0] = (1 + fShapeUnstyledKeyCount + fStyleKeyCount)  * sizeof(uint32_t);
        out[1] = fStyleKeyCount;
        shape.writeUnstyledKey(&out[2]);
        GrStyle::WriteKey(&out[2 + fShapeUnstyledKeyCount], shape.style(),
                          GrStyle::Apply::kPathEffectAndStrokeRec, 1);
    }

private:
    int fShapeUnstyledKeyCount;
    int fStyleKeyCount;
};

}

inline GrCCPathCache::HashNode::HashNode(GrCCPathCache* cache, const MaskTransform& m,
                                         const GrShape& shape) {
    SkASSERT(shape.hasUnstyledKey());

    WriteStyledKey writeKey(shape);
    void* memory = ::operator new (sizeof(GrCCPathCacheEntry) +
                                   writeKey.allocCountU32() * sizeof(uint32_t));
    fEntry = new (memory) GrCCPathCacheEntry(cache, m);

    // The shape key is a variable-length footer to the entry allocation.
    uint32_t* keyData = (uint32_t*)((char*)memory + sizeof(GrCCPathCacheEntry));
    writeKey.write(shape, keyData);
}

inline bool operator==(const GrCCPathCache::HashKey& key1, const GrCCPathCache::HashKey& key2) {
    return key1.fData[0] == key2.fData[0] && !memcmp(&key1.fData[1], &key2.fData[1], key1.fData[0]);
}

inline GrCCPathCache::HashKey GrCCPathCache::HashNode::GetKey(const GrCCPathCacheEntry* entry) {
    // The shape key is a variable-length footer to the entry allocation.
    return HashKey{(const uint32_t*)((const char*)entry + sizeof(GrCCPathCacheEntry))};
}

inline uint32_t GrCCPathCache::HashNode::Hash(HashKey key) {
    return GrResourceKeyHash(&key.fData[1], key.fData[0]);
}

GrCCPathCache::HashNode::~HashNode() {
    if (!fEntry) {
        return;
    }

    // Finalize our eviction from the path cache.
    SkASSERT(fEntry->fCacheWeakPtr);
    fEntry->fCacheWeakPtr->fLRU.remove(fEntry);
    fEntry->fCacheWeakPtr = nullptr;
    fEntry->unref();
}

GrCCPathCache::HashNode& GrCCPathCache::HashNode::operator=(HashNode&& node) {
    this->~HashNode();
    return *new (this) HashNode(std::move(node));
}

sk_sp<GrCCPathCacheEntry> GrCCPathCache::find(const GrShape& shape, const MaskTransform& m,
                                              CreateIfAbsent createIfAbsent) {
    if (!shape.hasUnstyledKey()) {
        return nullptr;
    }

    WriteStyledKey writeKey(shape);
    SkAutoSTMalloc<GrShape::kMaxKeyFromDataVerbCnt * 4, uint32_t> keyData(writeKey.allocCountU32());
    writeKey.write(shape, keyData.get());

    GrCCPathCacheEntry* entry = nullptr;
    if (HashNode* node = fHashTable.find({keyData.get()})) {
        entry = node->entry();
        SkASSERT(this == entry->fCacheWeakPtr);
        if (fuzzy_equals(m, entry->fMaskTransform)) {
            ++entry->fHitCount;  // The path was reused with a compatible matrix.
        } else if (CreateIfAbsent::kYes == createIfAbsent && entry->unique()) {
            // This entry is unique: we can recycle it instead of deleting and malloc-ing a new one.
            entry->fMaskTransform = m;
            entry->fHitCount = 1;
            entry->invalidateAtlas();
            SkASSERT(!entry->fCurrFlushAtlas);  // Should be null because 'entry' is unique.
        } else {
            this->evict(entry);
            entry = nullptr;
        }
    }

    if (!entry) {
        if (CreateIfAbsent::kNo == createIfAbsent) {
            return nullptr;
        }
        if (fHashTable.count() >= kMaxCacheCount) {
            this->evict(fLRU.tail());  // We've exceeded our limit.
        }
        entry = fHashTable.set(HashNode(this, m, shape))->entry();
        SkASSERT(fHashTable.count() <= kMaxCacheCount);
    } else {
        fLRU.remove(entry);  // Will be re-added at head.
    }

    fLRU.addToHead(entry);
    return sk_ref_sp(entry);
}

void GrCCPathCache::evict(const GrCCPathCacheEntry* entry) {
    SkASSERT(entry);
    SkASSERT(this == entry->fCacheWeakPtr);
    SkASSERT(fLRU.isInList(entry));
    SkASSERT(fHashTable.find(HashNode::GetKey(entry))->entry() == entry);

    fHashTable.remove(HashNode::GetKey(entry));  // ~HashNode() handles the rest.
}


GrCCPathCacheEntry::~GrCCPathCacheEntry() {
    SkASSERT(!fCacheWeakPtr);  // HashNode should have cleared our cache pointer.
    SkASSERT(!fCurrFlushAtlas);  // Client is required to reset fCurrFlushAtlas back to null.

    this->invalidateAtlas();
}

void GrCCPathCacheEntry::initAsStashedAtlas(const GrUniqueKey& atlasKey, uint32_t contextUniqueID,
                                            const SkIVector& atlasOffset, const SkRect& devBounds,
                                            const SkRect& devBounds45, const SkIRect& devIBounds,
                                            const SkIVector& maskShift) {
    SkASSERT(contextUniqueID != SK_InvalidUniqueID);
    SkASSERT(atlasKey.isValid());
    SkASSERT(!fCurrFlushAtlas);  // Otherwise we should reuse the atlas from last time.

    fContextUniqueID = contextUniqueID;

    fAtlasKey = atlasKey;
    fAtlasOffset = atlasOffset + maskShift;
    SkASSERT(!fCachedAtlasInfo);  // Otherwise they should have reused the cached atlas instead.

    float dx = (float)maskShift.fX, dy = (float)maskShift.fY;
    fDevBounds = devBounds.makeOffset(-dx, -dy);
    fDevBounds45 = GrCCPathProcessor::MakeOffset45(devBounds45, -dx, -dy);
    fDevIBounds = devIBounds.makeOffset(-maskShift.fX, -maskShift.fY);
}

void GrCCPathCacheEntry::updateToCachedAtlas(const GrUniqueKey& atlasKey, uint32_t contextUniqueID,
                                             const SkIVector& newAtlasOffset,
                                             sk_sp<GrCCAtlas::CachedAtlasInfo> info) {
    SkASSERT(contextUniqueID != SK_InvalidUniqueID);
    SkASSERT(atlasKey.isValid());
    SkASSERT(!fCurrFlushAtlas);  // Otherwise we should reuse the atlas from last time.

    fContextUniqueID = contextUniqueID;

    fAtlasKey = atlasKey;
    fAtlasOffset = newAtlasOffset;

    SkASSERT(!fCachedAtlasInfo);  // Otherwise we need to invalidate our pixels in the old info.
    fCachedAtlasInfo = std::move(info);
    fCachedAtlasInfo->fNumPathPixels += this->height() * this->width();
}

void GrCCPathCacheEntry::invalidateAtlas() {
    if (fCachedAtlasInfo) {
        // Mark our own pixels invalid in the cached atlas texture.
        fCachedAtlasInfo->fNumInvalidatedPathPixels += this->height() * this->width();
        if (!fCachedAtlasInfo->fIsPurgedFromResourceCache &&
            fCachedAtlasInfo->fNumInvalidatedPathPixels >= fCachedAtlasInfo->fNumPathPixels / 2) {
            // Too many invalidated pixels: purge the atlas texture from the resource cache.
            SkMessageBus<GrUniqueKeyInvalidatedMessage>::Post(
                    GrUniqueKeyInvalidatedMessage(fAtlasKey, fContextUniqueID));
            fCachedAtlasInfo->fIsPurgedFromResourceCache = true;
        }
    }

    fAtlasKey.reset();
    fCachedAtlasInfo = nullptr;
}

void GrCCPathCacheEntry::onChange() {
    // Our corresponding path was modified or deleted. Evict ourselves.
    if (fCacheWeakPtr) {
        fCacheWeakPtr->evict(this);
    }
}