1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrCCPRQuadraticProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLGeometryShaderBuilder.h"
#include "glsl/GrGLSLVertexShaderBuilder.h"
void GrCCPRQuadraticProcessor::onEmitVertexShader(const GrCCPRCoverageProcessor& proc,
GrGLSLVertexBuilder* v,
const TexelBufferHandle& pointsBuffer,
const char* atlasOffset, const char* rtAdjust,
GrGPArgs* gpArgs) const {
v->codeAppend ("float2 self = ");
v->appendTexelFetch(pointsBuffer,
SkStringPrintf("%s.x + sk_VertexID", proc.instanceAttrib()).c_str());
v->codeAppendf(".xy + %s;", atlasOffset);
gpArgs->fPositionVar.set(kFloat2_GrSLType, "self");
}
void GrCCPRQuadraticProcessor::emitWind(GrGLSLGeometryBuilder* g, const char* rtAdjust,
const char* outputWind) const {
// We will define bezierpts in onEmitGeometryShader.
g->codeAppend ("float area_times_2 = determinant(float2x2(bezierpts[1] - bezierpts[0], "
"bezierpts[2] - bezierpts[0]));");
// Drop curves that are nearly flat, in favor of the higher quality triangle antialiasing.
g->codeAppendf("if (2 * abs(area_times_2) < length((bezierpts[2] - bezierpts[0]) * %s.zx)) {",
rtAdjust);
#ifndef SK_BUILD_FOR_MAC
g->codeAppend ( "return;");
#else
// Returning from this geometry shader makes Mac very unhappy. Instead we make wind 0.
g->codeAppend ( "area_times_2 = 0;");
#endif
g->codeAppend ("}");
g->codeAppendf("%s = sign(area_times_2);", outputWind);
}
void GrCCPRQuadraticProcessor::onEmitGeometryShader(GrGLSLGeometryBuilder* g,
const char* emitVertexFn, const char* wind,
const char* rtAdjust) const {
// Prepend bezierpts at the start of the shader.
g->codePrependf("float3x2 bezierpts = float3x2(sk_in[0].gl_Position.xy, "
"sk_in[1].gl_Position.xy, "
"sk_in[2].gl_Position.xy);");
g->declareGlobal(fCanonicalMatrix);
g->codeAppendf("%s = float3x3(0.0, 0, 1, "
"0.5, 0, 1, "
"1.0, 1, 1) * "
"inverse(float3x3(bezierpts[0], 1, "
"bezierpts[1], 1, "
"bezierpts[2], 1));",
fCanonicalMatrix.c_str());
g->declareGlobal(fCanonicalDerivatives);
g->codeAppendf("%s = float2x2(%s) * float2x2(%s.x, 0, 0, %s.z);",
fCanonicalDerivatives.c_str(), fCanonicalMatrix.c_str(), rtAdjust, rtAdjust);
g->declareGlobal(fEdgeDistanceEquation);
g->codeAppendf("float2 edgept0 = bezierpts[%s > 0 ? 2 : 0];", wind);
g->codeAppendf("float2 edgept1 = bezierpts[%s > 0 ? 0 : 2];", wind);
this->emitEdgeDistanceEquation(g, "edgept0", "edgept1", fEdgeDistanceEquation.c_str());
this->emitQuadraticGeometry(g, emitVertexFn, rtAdjust);
}
void GrCCPRQuadraticProcessor::emitPerVertexGeometryCode(SkString* fnBody, const char* position,
const char* /*coverage*/,
const char* /*wind*/) const {
fnBody->appendf("%s.xy = (%s * float3(%s, 1)).xy;",
fXYD.gsOut(), fCanonicalMatrix.c_str(), position);
fnBody->appendf("%s.z = dot(%s.xy, %s) + %s.z;",
fXYD.gsOut(), fEdgeDistanceEquation.c_str(), position,
fEdgeDistanceEquation.c_str());
this->onEmitPerVertexGeometryCode(fnBody);
}
void GrCCPRQuadraticHullProcessor::emitQuadraticGeometry(GrGLSLGeometryBuilder* g,
const char* emitVertexFn,
const char* /*rtAdjust*/) const {
// Find the t value whose tangent is halfway between the tangents at the endpionts.
// (We defined bezierpts in onEmitGeometryShader.)
g->codeAppend ("float2 tan0 = bezierpts[1] - bezierpts[0];");
g->codeAppend ("float2 tan1 = bezierpts[2] - bezierpts[1];");
g->codeAppend ("float2 midnorm = normalize(tan0) - normalize(tan1);");
g->codeAppend ("float2 T = midnorm * float2x2(tan0 - tan1, tan0);");
g->codeAppend ("float t = clamp(T.t / T.s, 0, 1);"); // T.s=0 is weeded out by this point.
// Clip the bezier triangle by the tangent at our new t value. This is a simple application for
// De Casteljau's algorithm.
g->codeAppendf("float4x2 quadratic_hull = float4x2(bezierpts[0], "
"bezierpts[0] + tan0 * t, "
"bezierpts[1] + tan1 * t, "
"bezierpts[2]);");
int maxVerts = this->emitHullGeometry(g, emitVertexFn, "quadratic_hull", 4, "sk_InvocationID");
g->configure(GrGLSLGeometryBuilder::InputType::kTriangles,
GrGLSLGeometryBuilder::OutputType::kTriangleStrip,
maxVerts, 4);
}
void GrCCPRQuadraticHullProcessor::onEmitPerVertexGeometryCode(SkString* fnBody) const {
fnBody->appendf("%s = float2(2 * %s.x, -1) * %s;",
fGradXY.gsOut(), fXYD.gsOut(), fCanonicalDerivatives.c_str());
}
void GrCCPRQuadraticHullProcessor::emitShaderCoverage(GrGLSLFragmentBuilder* f,
const char* outputCoverage) const {
f->codeAppendf("float d = (%s.x * %s.x - %s.y) * inversesqrt(dot(%s, %s));",
fXYD.fsIn(), fXYD.fsIn(), fXYD.fsIn(), fGradXY.fsIn(), fGradXY.fsIn());
f->codeAppendf("%s = clamp(0.5 - d, 0, 1);", outputCoverage);
f->codeAppendf("%s += min(%s.z, 0);", outputCoverage, fXYD.fsIn()); // Flat closing edge.
}
void GrCCPRQuadraticCornerProcessor::emitQuadraticGeometry(GrGLSLGeometryBuilder* g,
const char* emitVertexFn,
const char* rtAdjust) const {
g->declareGlobal(fEdgeDistanceDerivatives);
g->codeAppendf("%s = %s.xy * %s.xz;",
fEdgeDistanceDerivatives.c_str(), fEdgeDistanceEquation.c_str(), rtAdjust);
g->codeAppendf("float2 corner = bezierpts[sk_InvocationID * 2];");
int numVertices = this->emitCornerGeometry(g, emitVertexFn, "corner");
g->configure(GrGLSLGeometryBuilder::InputType::kTriangles,
GrGLSLGeometryBuilder::OutputType::kTriangleStrip, numVertices, 2);
}
void GrCCPRQuadraticCornerProcessor::onEmitPerVertexGeometryCode(SkString* fnBody) const {
fnBody->appendf("%s = float3(%s[0].x, %s[0].y, %s.x);",
fdXYDdx.gsOut(), fCanonicalDerivatives.c_str(), fCanonicalDerivatives.c_str(),
fEdgeDistanceDerivatives.c_str());
fnBody->appendf("%s = float3(%s[1].x, %s[1].y, %s.y);",
fdXYDdy.gsOut(), fCanonicalDerivatives.c_str(), fCanonicalDerivatives.c_str(),
fEdgeDistanceDerivatives.c_str());
}
void GrCCPRQuadraticCornerProcessor::emitShaderCoverage(GrGLSLFragmentBuilder* f,
const char* outputCoverage) const {
f->codeAppendf("float x = %s.x, y = %s.y, d = %s.z;",
fXYD.fsIn(), fXYD.fsIn(), fXYD.fsIn());
f->codeAppendf("float2x3 grad_xyd = float2x3(%s, %s);", fdXYDdx.fsIn(), fdXYDdy.fsIn());
// Erase what the previous hull shader wrote. We don't worry about the two corners falling on
// the same pixel because those cases should have been weeded out by this point.
f->codeAppend ("float f = x*x - y;");
f->codeAppend ("float2 grad_f = float2(2*x, -1) * float2x2(grad_xyd);");
f->codeAppendf("%s = -(0.5 - f * inversesqrt(dot(grad_f, grad_f)));", outputCoverage);
f->codeAppendf("%s -= d;", outputCoverage);
// Use software msaa to approximate coverage at the corner pixels.
int sampleCount = this->defineSoftSampleLocations(f, "samples");
f->codeAppendf("float3 xyd_center = float3(%s.xy, %s.z + 0.5);",
fXYD.fsIn(), fXYD.fsIn());
f->codeAppendf("for (int i = 0; i < %i; ++i) {", sampleCount);
f->codeAppend ( "float3 xyd = grad_xyd * samples[i] + xyd_center;");
f->codeAppend ( "half f = xyd.y - xyd.x * xyd.x;"); // f > 0 -> inside curve.
f->codeAppendf( "%s += all(greaterThan(float2(f,xyd.z), float2(0))) ? %f : 0;",
outputCoverage, 1.0 / sampleCount);
f->codeAppendf("}");
}
|