1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrCCPRPathProcessor.h"
#include "GrOnFlushResourceProvider.h"
#include "GrTexture.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLGeometryProcessor.h"
#include "glsl/GrGLSLProgramBuilder.h"
#include "glsl/GrGLSLVarying.h"
// Slightly undershoot an AA bloat radius of 0.5 so vertices that fall on integer boundaries don't
// accidentally reach into neighboring path masks within the atlas.
constexpr float kAABloatRadius = 0.491111f;
// Paths are drawn as octagons. Each point on the octagon is the intersection of two lines: one edge
// from the path's bounding box and one edge from its 45-degree bounding box. The below inputs
// define a vertex by the two edges that need to be intersected. Normals point out of the octagon,
// and the bounding boxes are sent in as instance attribs.
static constexpr float kOctoEdgeNorms[8 * 4] = {
// bbox // bbox45
-1, 0, -1,+1,
-1, 0, -1,-1,
0,-1, -1,-1,
0,-1, +1,-1,
+1, 0, +1,-1,
+1, 0, +1,+1,
0,+1, +1,+1,
0,+1, -1,+1,
};
GR_DECLARE_STATIC_UNIQUE_KEY(gVertexBufferKey);
// Index buffer for the octagon defined above.
static uint16_t kOctoIndices[GrCCPRPathProcessor::kPerInstanceIndexCount] = {
0, 4, 2,
0, 6, 4,
0, 2, 1,
2, 4, 3,
4, 6, 5,
6, 0, 7,
};
GR_DECLARE_STATIC_UNIQUE_KEY(gIndexBufferKey);
GrCCPRPathProcessor::GrCCPRPathProcessor(GrResourceProvider* rp, sk_sp<GrTextureProxy> atlas,
SkPath::FillType fillType, const GrShaderCaps& shaderCaps)
: fFillType(fillType) {
this->addInstanceAttrib("devbounds", kVec4f_GrVertexAttribType, kHigh_GrSLPrecision);
this->addInstanceAttrib("devbounds45", kVec4f_GrVertexAttribType, kHigh_GrSLPrecision);
this->addInstanceAttrib("view_matrix", kVec4f_GrVertexAttribType, kHigh_GrSLPrecision);
this->addInstanceAttrib("view_translate", kVec2f_GrVertexAttribType, kHigh_GrSLPrecision);
// FIXME: this could be a vector of two shorts if it were supported by Ganesh.
// Note: this should be doable now with kVec2us_uint_GrVertexAttribType
this->addInstanceAttrib("atlas_offset", kVec2i_GrVertexAttribType, kHigh_GrSLPrecision);
this->addInstanceAttrib("color", kVec4ub_GrVertexAttribType, kLow_GrSLPrecision);
SkASSERT(offsetof(Instance, fDevBounds) ==
this->getInstanceAttrib(InstanceAttribs::kDevBounds).fOffsetInRecord);
SkASSERT(offsetof(Instance, fDevBounds45) ==
this->getInstanceAttrib(InstanceAttribs::kDevBounds45).fOffsetInRecord);
SkASSERT(offsetof(Instance, fViewMatrix) ==
this->getInstanceAttrib(InstanceAttribs::kViewMatrix).fOffsetInRecord);
SkASSERT(offsetof(Instance, fViewTranslate) ==
this->getInstanceAttrib(InstanceAttribs::kViewTranslate).fOffsetInRecord);
SkASSERT(offsetof(Instance, fAtlasOffset) ==
this->getInstanceAttrib(InstanceAttribs::kAtlasOffset).fOffsetInRecord);
SkASSERT(offsetof(Instance, fColor) ==
this->getInstanceAttrib(InstanceAttribs::kColor).fOffsetInRecord);
SkASSERT(sizeof(Instance) == this->getInstanceStride());
GR_STATIC_ASSERT(6 == kNumInstanceAttribs);
this->addVertexAttrib("edge_norms", kVec4f_GrVertexAttribType, kHigh_GrSLPrecision);
fAtlasAccess.reset(std::move(atlas), GrSamplerState::Filter::kNearest,
GrSamplerState::WrapMode::kClamp, kFragment_GrShaderFlag);
fAtlasAccess.instantiate(rp);
this->addTextureSampler(&fAtlasAccess);
this->initClassID<GrCCPRPathProcessor>();
}
void GrCCPRPathProcessor::getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const {
b->add32((fFillType << 16) | this->atlasProxy()->origin());
}
class GLSLPathProcessor : public GrGLSLGeometryProcessor {
public:
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override;
private:
void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& primProc,
FPCoordTransformIter&& transformIter) override {
const GrCCPRPathProcessor& proc = primProc.cast<GrCCPRPathProcessor>();
pdman.set2f(fAtlasAdjustUniform, 1.0f / proc.atlas()->width(),
1.0f / proc.atlas()->height());
this->setTransformDataHelper(SkMatrix::I(), pdman, &transformIter);
}
GrGLSLUniformHandler::UniformHandle fAtlasAdjustUniform;
typedef GrGLSLGeometryProcessor INHERITED;
};
GrGLSLPrimitiveProcessor* GrCCPRPathProcessor::createGLSLInstance(const GrShaderCaps&) const {
return new GLSLPathProcessor();
}
void GLSLPathProcessor::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
using InstanceAttribs = GrCCPRPathProcessor::InstanceAttribs;
const GrCCPRPathProcessor& proc = args.fGP.cast<GrCCPRPathProcessor>();
GrGLSLUniformHandler* uniHandler = args.fUniformHandler;
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
const char* atlasAdjust;
fAtlasAdjustUniform = uniHandler->addUniform(
kVertex_GrShaderFlag,
kVec2f_GrSLType, kHigh_GrSLPrecision, "atlas_adjust", &atlasAdjust);
varyingHandler->emitAttributes(proc);
GrGLSLVertToFrag texcoord(kVec2f_GrSLType);
GrGLSLVertToFrag color(kVec4f_GrSLType);
varyingHandler->addVarying("texcoord", &texcoord, kHigh_GrSLPrecision);
varyingHandler->addFlatPassThroughAttribute(&proc.getInstanceAttrib(InstanceAttribs::kColor),
args.fOutputColor, kLow_GrSLPrecision);
// Vertex shader.
GrGLSLVertexBuilder* v = args.fVertBuilder;
// Find the intersections of (bloated) devBounds and devBounds45 in order to come up with an
// octagon that circumscribes the (bloated) path. A vertex is the intersection of two lines:
// one edge from the path's bounding box and one edge from its 45-degree bounding box.
v->codeAppendf("highp float2x2 N = float2x2(%s);", proc.getEdgeNormsAttrib().fName);
// N[0] is the normal for the edge we are intersecting from the regular bounding box, pointing
// out of the octagon.
v->codeAppendf("highp float2 refpt = (min(N[0].x, N[0].y) < 0) ? %s.xy : %s.zw;",
proc.getInstanceAttrib(InstanceAttribs::kDevBounds).fName,
proc.getInstanceAttrib(InstanceAttribs::kDevBounds).fName);
v->codeAppendf("refpt += N[0] * %f;", kAABloatRadius); // bloat for AA.
// N[1] is the normal for the edge we are intersecting from the 45-degree bounding box, pointing
// out of the octagon.
v->codeAppendf("highp float2 refpt45 = (N[1].x < 0) ? %s.xy : %s.zw;",
proc.getInstanceAttrib(InstanceAttribs::kDevBounds45).fName,
proc.getInstanceAttrib(InstanceAttribs::kDevBounds45).fName);
v->codeAppendf("refpt45 *= float2x2(.5,.5,-.5,.5);"); // transform back to device space.
v->codeAppendf("refpt45 += N[1] * %f;", kAABloatRadius); // bloat for AA.
v->codeAppend ("highp float2 K = float2(dot(N[0], refpt), dot(N[1], refpt45));");
v->codeAppendf("highp float2 octocoord = K * inverse(N);");
gpArgs->fPositionVar.set(kVec2f_GrSLType, "octocoord");
// Convert to atlas coordinates in order to do our texture lookup.
v->codeAppendf("highp float2 atlascoord = octocoord + float2(%s);",
proc.getInstanceAttrib(InstanceAttribs::kAtlasOffset).fName);
if (kTopLeft_GrSurfaceOrigin == proc.atlasProxy()->origin()) {
v->codeAppendf("%s = atlascoord * %s;", texcoord.vsOut(), atlasAdjust);
} else {
SkASSERT(kBottomLeft_GrSurfaceOrigin == proc.atlasProxy()->origin());
v->codeAppendf("%s = float2(atlascoord.x * %s.x, 1 - atlascoord.y * %s.y);",
texcoord.vsOut(), atlasAdjust, atlasAdjust);
}
// Convert to (local) path cordinates.
v->codeAppendf("highp float2 pathcoord = inverse(float2x2(%s)) * (octocoord - %s);",
proc.getInstanceAttrib(InstanceAttribs::kViewMatrix).fName,
proc.getInstanceAttrib(InstanceAttribs::kViewTranslate).fName);
this->emitTransforms(v, varyingHandler, uniHandler, gpArgs->fPositionVar, "pathcoord",
args.fFPCoordTransformHandler);
// Fragment shader.
GrGLSLPPFragmentBuilder* f = args.fFragBuilder;
f->codeAppend ("mediump float coverage_count = ");
f->appendTextureLookup(args.fTexSamplers[0], texcoord.fsIn(), kVec2f_GrSLType);
f->codeAppend (".a;");
if (SkPath::kWinding_FillType == proc.fillType()) {
f->codeAppendf("%s = float4(min(abs(coverage_count), 1));", args.fOutputCoverage);
} else {
SkASSERT(SkPath::kEvenOdd_FillType == proc.fillType());
f->codeAppend ("mediump float t = mod(abs(coverage_count), 2);");
f->codeAppendf("%s = float4(1 - abs(t - 1));", args.fOutputCoverage);
}
}
sk_sp<GrBuffer> GrCCPRPathProcessor::FindOrMakeIndexBuffer(GrOnFlushResourceProvider* onFlushRP) {
GR_DEFINE_STATIC_UNIQUE_KEY(gIndexBufferKey);
return onFlushRP->findOrMakeStaticBuffer(gIndexBufferKey, kIndex_GrBufferType,
sizeof(kOctoIndices), kOctoIndices);
}
sk_sp<GrBuffer> GrCCPRPathProcessor::FindOrMakeVertexBuffer(GrOnFlushResourceProvider* onFlushRP) {
GR_DEFINE_STATIC_UNIQUE_KEY(gVertexBufferKey);
return onFlushRP->findOrMakeStaticBuffer(gVertexBufferKey, kVertex_GrBufferType,
sizeof(kOctoEdgeNorms), kOctoEdgeNorms);
}
|