aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/ccpr/GrCCGeometry.cpp
blob: 302cfe2f2e17329f8b641ba4f950e01dc2116089 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
/*
 * Copyright 2017 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "GrCCGeometry.h"

#include "GrTypes.h"
#include "GrPathUtils.h"
#include <algorithm>
#include <cmath>
#include <cstdlib>

// We convert between SkPoint and Sk2f freely throughout this file.
GR_STATIC_ASSERT(SK_SCALAR_IS_FLOAT);
GR_STATIC_ASSERT(2 * sizeof(float) == sizeof(SkPoint));
GR_STATIC_ASSERT(0 == offsetof(SkPoint, fX));

void GrCCGeometry::beginPath() {
    SkASSERT(!fBuildingContour);
    fVerbs.push_back(Verb::kBeginPath);
}

void GrCCGeometry::beginContour(const SkPoint& pt) {
    SkASSERT(!fBuildingContour);
    // Store the current verb count in the fTriangles field for now. When we close the contour we
    // will use this value to calculate the actual number of triangles in its fan.
    fCurrContourTallies = {fVerbs.count(), 0, 0, 0, 0};

    fPoints.push_back(pt);
    fVerbs.push_back(Verb::kBeginContour);
    fCurrAnchorPoint = pt;

    SkDEBUGCODE(fBuildingContour = true);
}

void GrCCGeometry::lineTo(const SkPoint& pt) {
    SkASSERT(fBuildingContour);
    fPoints.push_back(pt);
    fVerbs.push_back(Verb::kLineTo);
}

void GrCCGeometry::appendLine(const Sk2f& endpt) {
    endpt.store(&fPoints.push_back());
    fVerbs.push_back(Verb::kLineTo);
}

static inline Sk2f normalize(const Sk2f& n) {
    Sk2f nn = n*n;
    return n * (nn + SkNx_shuffle<1,0>(nn)).rsqrt();
}

static inline float dot(const Sk2f& a, const Sk2f& b) {
    float product[2];
    (a * b).store(product);
    return product[0] + product[1];
}

static inline bool are_collinear(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
                                 float tolerance = 1/16.f) { // 1/16 of a pixel.
    Sk2f l = p2 - p0; // Line from p0 -> p2.

    // lwidth = Manhattan width of l.
    Sk2f labs = l.abs();
    float lwidth = labs[0] + labs[1];

    // d = |p1 - p0| dot | l.y|
    //                   |-l.x| = distance from p1 to l.
    Sk2f dd = (p1 - p0) * SkNx_shuffle<1,0>(l);
    float d = dd[0] - dd[1];

    // We are collinear if a box with radius "tolerance", centered on p1, touches the line l.
    // To decide this, we check if the distance from p1 to the line is less than the distance from
    // p1 to the far corner of this imaginary box, along that same normal vector.
    // The far corner of the box can be found at "p1 + sign(n) * tolerance", where n is normal to l:
    //
    //   abs(dot(p1 - p0, n)) <= dot(sign(n) * tolerance, n)
    //
    // Which reduces to:
    //
    //   abs(d) <= (n.x * sign(n.x) + n.y * sign(n.y)) * tolerance
    //   abs(d) <= (abs(n.x) + abs(n.y)) * tolerance
    //
    // Use "<=" in case l == 0.
    return std::abs(d) <= lwidth * tolerance;
}

static inline bool are_collinear(const SkPoint P[4], float tolerance = 1/16.f) { // 1/16 of a pixel.
    Sk4f Px, Py;               // |Px  Py|   |p0 - p3|
    Sk4f::Load2(P, &Px, &Py);  // |.   . | = |p1 - p3|
    Px -= Px[3];               // |.   . |   |p2 - p3|
    Py -= Py[3];               // |.   . |   |   0   |

    // Find [lx, ly] = the line from p3 to the furthest-away point from p3.
    Sk4f Pwidth = Px.abs() + Py.abs(); // Pwidth = Manhattan width of each point.
    int lidx = Pwidth[0] > Pwidth[1] ? 0 : 1;
    lidx = Pwidth[lidx] > Pwidth[2] ? lidx : 2;
    float lx = Px[lidx], ly = Py[lidx];
    float lwidth = Pwidth[lidx]; // lwidth = Manhattan width of [lx, ly].

    //     |Px  Py|
    // d = |.   . | * | ly| = distances from each point to l (two of the distances will be zero).
    //     |.   . |   |-lx|
    //     |.   . |
    Sk4f d = Px*ly - Py*lx;

    // We are collinear if boxes with radius "tolerance", centered on all 4 points all touch line l.
    // (See the rationale for this formula in the above, 3-point version of this function.)
    // Use "<=" in case l == 0.
    return (d.abs() <= lwidth * tolerance).allTrue();
}

// Returns whether the (convex) curve segment is monotonic with respect to [endPt - startPt].
static inline bool is_convex_curve_monotonic(const Sk2f& startPt, const Sk2f& tan0,
                                             const Sk2f& endPt, const Sk2f& tan1) {
    Sk2f v = endPt - startPt;
    float dot0 = dot(tan0, v);
    float dot1 = dot(tan1, v);

    // A small, negative tolerance handles floating-point error in the case when one tangent
    // approaches 0 length, meaning the (convex) curve segment is effectively a flat line.
    float tolerance = -std::max(std::abs(dot0), std::abs(dot1)) * SK_ScalarNearlyZero;
    return dot0 >= tolerance && dot1 >= tolerance;
}

template<int N> static inline SkNx<N,float> lerp(const SkNx<N,float>& a, const SkNx<N,float>& b,
                                                 const SkNx<N,float>& t) {
    return SkNx_fma(t, b - a, a);
}

void GrCCGeometry::quadraticTo(const SkPoint P[3]) {
    SkASSERT(fBuildingContour);
    SkASSERT(P[0] == fPoints.back());
    Sk2f p0 = Sk2f::Load(P);
    Sk2f p1 = Sk2f::Load(P+1);
    Sk2f p2 = Sk2f::Load(P+2);

    // Don't crunch on the curve if it is nearly flat (or just very small). Flat curves can break
    // The monotonic chopping math.
    if (are_collinear(p0, p1, p2)) {
        this->appendLine(p2);
        return;
    }

    this->appendMonotonicQuadratics(p0, p1, p2);
}

inline void GrCCGeometry::appendMonotonicQuadratics(const Sk2f& p0, const Sk2f& p1,
                                                    const Sk2f& p2) {
    Sk2f tan0 = p1 - p0;
    Sk2f tan1 = p2 - p1;

    // This should almost always be this case for well-behaved curves in the real world.
    if (is_convex_curve_monotonic(p0, tan0, p2, tan1)) {
        this->appendSingleMonotonicQuadratic(p0, p1, p2);
        return;
    }

    // Chop the curve into two segments with equal curvature. To do this we find the T value whose
    // tangent angle is halfway between tan0 and tan1.
    Sk2f n = normalize(tan0) - normalize(tan1);

    // The midtangent can be found where (dQ(t) dot n) = 0:
    //
    //   0 = (dQ(t) dot n) = | 2*t  1 | * | p0 - 2*p1 + p2 | * | n |
    //                                    | -2*p0 + 2*p1   |   | . |
    //
    //                     = | 2*t  1 | * | tan1 - tan0 | * | n |
    //                                    | 2*tan0      |   | . |
    //
    //                     = 2*t * ((tan1 - tan0) dot n) + (2*tan0 dot n)
    //
    //   t = (tan0 dot n) / ((tan0 - tan1) dot n)
    Sk2f dQ1n = (tan0 - tan1) * n;
    Sk2f dQ0n = tan0 * n;
    Sk2f t = (dQ0n + SkNx_shuffle<1,0>(dQ0n)) / (dQ1n + SkNx_shuffle<1,0>(dQ1n));
    t = Sk2f::Min(Sk2f::Max(t, 0), 1); // Clamp for FP error.

    Sk2f p01 = SkNx_fma(t, tan0, p0);
    Sk2f p12 = SkNx_fma(t, tan1, p1);
    Sk2f p012 = lerp(p01, p12, t);

    this->appendSingleMonotonicQuadratic(p0, p01, p012);
    this->appendSingleMonotonicQuadratic(p012, p12, p2);
}

inline void GrCCGeometry::appendSingleMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1,
                                                         const Sk2f& p2) {
    SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));

    // Don't send curves to the GPU if we know they are nearly flat (or just very small).
    if (are_collinear(p0, p1, p2)) {
        this->appendLine(p2);
        return;
    }

    p1.store(&fPoints.push_back());
    p2.store(&fPoints.push_back());
    fVerbs.push_back(Verb::kMonotonicQuadraticTo);
    ++fCurrContourTallies.fQuadratics;
}

using ExcludedTerm = GrPathUtils::ExcludedTerm;

// Calculates the padding to apply around inflection points, in homogeneous parametric coordinates.
//
// More specifically, if the inflection point lies at C(t/s), then C((t +/- returnValue) / s) will
// be the two points on the curve at which a square box with radius "padRadius" will have a corner
// that touches the inflection point's tangent line.
//
// A serpentine cubic has two inflection points, so this method takes Sk2f and computes the padding
// for both in SIMD.
static inline Sk2f calc_inflect_homogeneous_padding(float padRadius, const Sk2f& t, const Sk2f& s,
                                                    const SkMatrix& CIT, ExcludedTerm skipTerm) {
    SkASSERT(padRadius >= 0);

    Sk2f Clx = s*s*s;
    Sk2f Cly = (ExcludedTerm::kLinearTerm == skipTerm) ? s*s*t*-3 : s*t*t*3;

    Sk2f Lx = CIT[0] * Clx + CIT[3] * Cly;
    Sk2f Ly = CIT[1] * Clx + CIT[4] * Cly;

    float ret[2];
    Sk2f bloat = padRadius * (Lx.abs() + Ly.abs());
    (bloat * s >= 0).thenElse(bloat, -bloat).store(ret);

    ret[0] = cbrtf(ret[0]);
    ret[1] = cbrtf(ret[1]);
    return Sk2f::Load(ret);
}

static inline void swap_if_greater(float& a, float& b) {
    if (a > b) {
        std::swap(a, b);
    }
}

// Calculates all parameter values for a loop at which points a square box with radius "padRadius"
// will have a corner that touches a tangent line from the intersection.
//
// T2 must contain the lesser parameter value of the loop intersection in its first component, and
// the greater in its second.
//
// roots[0] will be filled with 1 or 3 sorted parameter values, representing the padding points
// around the first tangent. roots[1] will be filled with the padding points for the second tangent.
static inline void calc_loop_intersect_padding_pts(float padRadius, const Sk2f& T2,
                                                  const SkMatrix& CIT, ExcludedTerm skipTerm,
                                                  SkSTArray<3, float, true> roots[2]) {
    SkASSERT(padRadius >= 0);
    SkASSERT(T2[0] <= T2[1]);
    SkASSERT(roots[0].empty());
    SkASSERT(roots[1].empty());

    Sk2f T1 = SkNx_shuffle<1,0>(T2);
    Sk2f Cl = (ExcludedTerm::kLinearTerm == skipTerm) ? T2*-2 - T1 : T2*T2 + T2*T1*2;
    Sk2f Lx = Cl * CIT[3] + CIT[0];
    Sk2f Ly = Cl * CIT[4] + CIT[1];

    Sk2f bloat = Sk2f(+.5f * padRadius, -.5f * padRadius) * (Lx.abs() + Ly.abs());
    Sk2f q = (1.f/3) * (T2 - T1);

    Sk2f qqq = q*q*q;
    Sk2f discr = qqq*bloat*2 + bloat*bloat;

    float numRoots[2], D[2];
    (discr < 0).thenElse(3, 1).store(numRoots);
    (T2 - q).store(D);

    // Values for calculating one root.
    float R[2], QQ[2];
    if ((discr >= 0).anyTrue()) {
        Sk2f r = qqq + bloat;
        Sk2f s = r.abs() + discr.sqrt();
        (r > 0).thenElse(-s, s).store(R);
        (q*q).store(QQ);
    }

    // Values for calculating three roots.
    float P[2], cosTheta3[2];
    if ((discr < 0).anyTrue()) {
        (q.abs() * -2).store(P);
        ((q >= 0).thenElse(1, -1) + bloat / qqq.abs()).store(cosTheta3);
    }

    for (int i = 0; i < 2; ++i) {
        if (1 == numRoots[i]) {
            float A = cbrtf(R[i]);
            float B = A != 0 ? QQ[i]/A : 0;
            roots[i].push_back(A + B + D[i]);
            continue;
        }

        static constexpr float k2PiOver3 = 2 * SK_ScalarPI / 3;
        float theta = std::acos(cosTheta3[i]) * (1.f/3);
        roots[i].push_back(P[i] * std::cos(theta) + D[i]);
        roots[i].push_back(P[i] * std::cos(theta + k2PiOver3) + D[i]);
        roots[i].push_back(P[i] * std::cos(theta - k2PiOver3) + D[i]);

        // Sort the three roots.
        swap_if_greater(roots[i][0], roots[i][1]);
        swap_if_greater(roots[i][1], roots[i][2]);
        swap_if_greater(roots[i][0], roots[i][1]);
    }
}

static inline Sk2f first_unless_nearly_zero(const Sk2f& a, const Sk2f& b) {
    Sk2f aa = a*a;
    aa += SkNx_shuffle<1,0>(aa);
    SkASSERT(aa[0] == aa[1]);

    Sk2f bb = b*b;
    bb += SkNx_shuffle<1,0>(bb);
    SkASSERT(bb[0] == bb[1]);

    return (aa > bb * SK_ScalarNearlyZero).thenElse(a, b);
}

static inline bool is_cubic_nearly_quadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
                                             const Sk2f& p3, Sk2f& tan0, Sk2f& tan1, Sk2f& c) {
    tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0);
    tan1 = first_unless_nearly_zero(p3 - p2, p3 - p1);

    Sk2f c1 = SkNx_fma(Sk2f(1.5f), tan0, p0);
    Sk2f c2 = SkNx_fma(Sk2f(-1.5f), tan1, p3);
    c = (c1 + c2) * .5f; // Hopefully optimized out if not used?

    return ((c1 - c2).abs() <= 1).allTrue();
}

// Given a convex curve segment with the following order-2 tangent function:
//
//                                                       |C2x  C2y|
//     tan = some_scale * |dx/dt  dy/dt| = |t^2  t  1| * |C1x  C1y|
//                                                       |C0x  C0y|
//
// This function finds the T value whose tangent angle is halfway between the tangents at T=0 and
// T=1 (tan0 and tan1).
static inline float find_midtangent(const Sk2f& tan0, const Sk2f& tan1,
                                    float scale2, const Sk2f& C2,
                                    float scale1, const Sk2f& C1,
                                    float scale0, const Sk2f& C0) {
    // Tangents point in the direction of increasing T, so tan0 and -tan1 both point toward the
    // midtangent. 'n' will therefore bisect tan0 and -tan1, giving us the normal to the midtangent.
    //
    //     n dot midtangent = 0
    //
    Sk2f n = normalize(tan0) - normalize(tan1);

    // Find the T value at the midtangent. This is a simple quadratic equation:
    //
    //     midtangent dot n = 0
    //
    //     (|t^2  t  1| * C) dot n = 0
    //
    //     |t^2  t  1| dot C*n = 0
    //
    // First find coeffs = C*n.
    Sk4f C[2];
    Sk2f::Store4(C, C2, C1, C0, 0);
    Sk4f coeffs = C[0]*n[0] + C[1]*n[1];
    if (1 != scale2 || 1 != scale1 || 1 != scale0) {
        coeffs *= Sk4f(scale2, scale1, scale0, 0);
    }

    // Now solve the quadratic.
    float a = coeffs[0], b = coeffs[1], c = coeffs[2];
    float discr = b*b - 4*a*c;
    if (discr < 0) {
        return 0; // This will only happen if the curve is a line.
    }

    // The roots are q/a and c/q. Pick the one closer to T=.5.
    float q = -.5f * (b + copysignf(std::sqrt(discr), b));
    float r = .5f*q*a;
    return std::abs(q*q - r) < std::abs(a*c - r) ? q/a : c/q;
}

void GrCCGeometry::cubicTo(const SkPoint P[4], float inflectPad, float loopIntersectPad) {
    SkASSERT(fBuildingContour);
    SkASSERT(P[0] == fPoints.back());

    // Don't crunch on the curve or inflate geometry if it is nearly flat (or just very small).
    // Flat curves can break the math below.
    if (are_collinear(P)) {
        this->lineTo(P[3]);
        return;
    }

    Sk2f p0 = Sk2f::Load(P);
    Sk2f p1 = Sk2f::Load(P+1);
    Sk2f p2 = Sk2f::Load(P+2);
    Sk2f p3 = Sk2f::Load(P+3);

    // Also detect near-quadratics ahead of time.
    Sk2f tan0, tan1, c;
    if (is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan1, c)) {
        this->appendMonotonicQuadratics(p0, c, p3);
        return;
    }

    double tt[2], ss[2];
    fCurrCubicType = SkClassifyCubic(P, tt, ss);
    SkASSERT(!SkCubicIsDegenerate(fCurrCubicType)); // Should have been caught above.

    SkMatrix CIT;
    ExcludedTerm skipTerm = GrPathUtils::calcCubicInverseTransposePowerBasisMatrix(P, &CIT);
    SkASSERT(ExcludedTerm::kNonInvertible != skipTerm); // Should have been caught above.
    SkASSERT(0 == CIT[6]);
    SkASSERT(0 == CIT[7]);
    SkASSERT(1 == CIT[8]);

    // Each cubic has five different sections (not always inside t=[0..1]):
    //
    //   1. The section before the first inflection or loop intersection point, with padding.
    //   2. The section that passes through the first inflection/intersection (aka the K,L
    //      intersection point or T=tt[0]/ss[0]).
    //   3. The section between the two inflections/intersections, with padding.
    //   4. The section that passes through the second inflection/intersection (aka the K,M
    //      intersection point or T=tt[1]/ss[1]).
    //   5. The section after the second inflection/intersection, with padding.
    //
    // Sections 1,3,5 can be rendered directly using the CCPR cubic shader.
    //
    // Sections 2 & 4 must be approximated. For loop intersections we render them with
    // quadratic(s), and when passing through an inflection point we use a plain old flat line.
    //
    // We find T0..T3 below to be the dividing points between these five sections.
    float T0, T1, T2, T3;
    if (SkCubicType::kLoop != fCurrCubicType) {
        Sk2f t = Sk2f(static_cast<float>(tt[0]), static_cast<float>(tt[1]));
        Sk2f s = Sk2f(static_cast<float>(ss[0]), static_cast<float>(ss[1]));
        Sk2f pad = calc_inflect_homogeneous_padding(inflectPad, t, s, CIT, skipTerm);

        float T[2];
        ((t - pad) / s).store(T);
        T0 = T[0];
        T2 = T[1];

        ((t + pad) / s).store(T);
        T1 = T[0];
        T3 = T[1];
    } else {
        const float T[2] = {static_cast<float>(tt[0]/ss[0]), static_cast<float>(tt[1]/ss[1])};
        SkSTArray<3, float, true> roots[2];
        calc_loop_intersect_padding_pts(loopIntersectPad, Sk2f::Load(T), CIT, skipTerm, roots);
        T0 = roots[0].front();
        if (1 == roots[0].count() || 1 == roots[1].count()) {
            // The loop is tighter than our desired padding. Collapse the middle section to a point
            // somewhere in the middle-ish of the loop and Sections 2 & 4 will approximate the the
            // whole thing with quadratics.
            T1 = T2 = (T[0] + T[1]) * .5f;
        } else {
            T1 = roots[0][1];
            T2 = roots[1][1];
        }
        T3 = roots[1].back();
    }

    // Guarantee that T0..T3 are monotonic.
    if (T0 > T3) {
        // This is not a mathematically valid scenario. The only reason it would happen is if
        // padding is very small and we have encountered FP rounding error.
        T0 = T1 = T2 = T3 = (T0 + T3) / 2;
    } else if (T1 > T2) {
        // This just means padding before the middle section overlaps the padding after it. We
        // collapse the middle section to a single point that splits the difference between the
        // overlap in padding.
        T1 = T2 = (T1 + T2) / 2;
    }
    // Clamp T1 & T2 inside T0..T3. The only reason this would be necessary is if we have
    // encountered FP rounding error.
    T1 = std::max(T0, std::min(T1, T3));
    T2 = std::max(T0, std::min(T2, T3));

    // Next we chop the cubic up at all T0..T3 inside 0..1 and store the resulting segments.
    if (T1 >= 1) {
        // Only sections 1 & 2 can be in 0..1.
        this->chopCubic<&GrCCGeometry::appendMonotonicCubics,
                        &GrCCGeometry::appendCubicApproximation>(p0, p1, p2, p3, T0);
        return;
    }

    if (T2 <= 0) {
        // Only sections 4 & 5 can be in 0..1.
        this->chopCubic<&GrCCGeometry::appendCubicApproximation,
                        &GrCCGeometry::appendMonotonicCubics>(p0, p1, p2, p3, T3);
        return;
    }

    Sk2f midp0, midp1; // These hold the first two bezier points of the middle section, if needed.

    if (T1 > 0) {
        Sk2f T1T1 = Sk2f(T1);
        Sk2f ab1 = lerp(p0, p1, T1T1);
        Sk2f bc1 = lerp(p1, p2, T1T1);
        Sk2f cd1 = lerp(p2, p3, T1T1);
        Sk2f abc1 = lerp(ab1, bc1, T1T1);
        Sk2f bcd1 = lerp(bc1, cd1, T1T1);
        Sk2f abcd1 = lerp(abc1, bcd1, T1T1);

        // Sections 1 & 2.
        this->chopCubic<&GrCCGeometry::appendMonotonicCubics,
                        &GrCCGeometry::appendCubicApproximation>(p0, ab1, abc1, abcd1, T0/T1);

        if (T2 >= 1) {
            // The rest of the curve is Section 3 (middle section).
            this->appendMonotonicCubics(abcd1, bcd1, cd1, p3);
            return;
        }

        // Now calculate the first two bezier points of the middle section. The final two will come
        // from when we chop the other side, as that is numerically more stable.
        midp0 = abcd1;
        midp1 = lerp(abcd1, bcd1, Sk2f((T2 - T1) / (1 - T1)));
    } else if (T2 >= 1) {
        // The entire cubic is Section 3 (middle section).
        this->appendMonotonicCubics(p0, p1, p2, p3);
        return;
    }

    SkASSERT(T2 > 0 && T2 < 1);

    Sk2f T2T2 = Sk2f(T2);
    Sk2f ab2 = lerp(p0, p1, T2T2);
    Sk2f bc2 = lerp(p1, p2, T2T2);
    Sk2f cd2 = lerp(p2, p3, T2T2);
    Sk2f abc2 = lerp(ab2, bc2, T2T2);
    Sk2f bcd2 = lerp(bc2, cd2, T2T2);
    Sk2f abcd2 = lerp(abc2, bcd2, T2T2);

    if (T1 <= 0) {
        // The curve begins at Section 3 (middle section).
        this->appendMonotonicCubics(p0, ab2, abc2, abcd2);
    } else if (T2 > T1) {
        // Section 3 (middle section).
        Sk2f midp2 = lerp(abc2, abcd2, Sk2f(T1/T2));
        this->appendMonotonicCubics(midp0, midp1, midp2, abcd2);
    }

    // Sections 4 & 5.
    this->chopCubic<&GrCCGeometry::appendCubicApproximation,
                    &GrCCGeometry::appendMonotonicCubics>(abcd2, bcd2, cd2, p3, (T3-T2) / (1-T2));
}

template<GrCCGeometry::AppendCubicFn AppendLeftRight>
inline void GrCCGeometry::chopCubicAtMidTangent(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
                                                const Sk2f& p3, const Sk2f& tan0,
                                                const Sk2f& tan1, int maxFutureSubdivisions) {
    float midT = find_midtangent(tan0, tan1, 3, p3 + (p1 - p2)*3 - p0,
                                             6, p0 - p1*2 + p2,
                                             3, p1 - p0);
    // Use positive logic since NaN fails comparisons. (However midT should not be NaN since we cull
    // near-flat cubics in cubicTo().)
    if (!(midT > 0 && midT < 1)) {
        // The cubic is flat. Otherwise there would be a real midtangent inside T=0..1.
        this->appendLine(p3);
        return;
    }

    this->chopCubic<AppendLeftRight, AppendLeftRight>(p0, p1, p2, p3, midT, maxFutureSubdivisions);
}

template<GrCCGeometry::AppendCubicFn AppendLeft, GrCCGeometry::AppendCubicFn AppendRight>
inline void GrCCGeometry::chopCubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
                                    const Sk2f& p3, float T, int maxFutureSubdivisions) {
    if (T >= 1) {
        (this->*AppendLeft)(p0, p1, p2, p3, maxFutureSubdivisions);
        return;
    }

    if (T <= 0) {
        (this->*AppendRight)(p0, p1, p2, p3, maxFutureSubdivisions);
        return;
    }

    Sk2f TT = T;
    Sk2f ab = lerp(p0, p1, TT);
    Sk2f bc = lerp(p1, p2, TT);
    Sk2f cd = lerp(p2, p3, TT);
    Sk2f abc = lerp(ab, bc, TT);
    Sk2f bcd = lerp(bc, cd, TT);
    Sk2f abcd = lerp(abc, bcd, TT);
    (this->*AppendLeft)(p0, ab, abc, abcd, maxFutureSubdivisions);
    (this->*AppendRight)(abcd, bcd, cd, p3, maxFutureSubdivisions);
}

void GrCCGeometry::appendMonotonicCubics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
                                         const Sk2f& p3, int maxSubdivisions) {
    SkASSERT(maxSubdivisions >= 0);
    if ((p0 == p3).allTrue()) {
        return;
    }

    if (maxSubdivisions) {
        Sk2f tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0);
        Sk2f tan1 = first_unless_nearly_zero(p3 - p2, p3 - p1);

        if (!is_convex_curve_monotonic(p0, tan0, p3, tan1)) {
            this->chopCubicAtMidTangent<&GrCCGeometry::appendMonotonicCubics>(p0, p1, p2, p3,
                                                                              tan0, tan1,
                                                                              maxSubdivisions - 1);
            return;
        }
    }

    SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));

    // Don't send curves to the GPU if we know they are nearly flat (or just very small).
    // Since the cubic segment is known to be convex at this point, our flatness check is simple.
    if (are_collinear(p0, (p1 + p2) * .5f, p3)) {
        this->appendLine(p3);
        return;
    }

    p1.store(&fPoints.push_back());
    p2.store(&fPoints.push_back());
    p3.store(&fPoints.push_back());
    fVerbs.push_back(Verb::kMonotonicCubicTo);
    ++fCurrContourTallies.fCubics;
}

void GrCCGeometry::appendCubicApproximation(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
                                            const Sk2f& p3, int maxSubdivisions) {
    SkASSERT(maxSubdivisions >= 0);
    if ((p0 == p3).allTrue()) {
        return;
    }

    if (SkCubicType::kLoop != fCurrCubicType && SkCubicType::kQuadratic != fCurrCubicType) {
        // This section passes through an inflection point, so we can get away with a flat line.
        // This can cause some curves to feel slightly more flat when inspected rigorously back and
        // forth against another renderer, but for now this seems acceptable given the simplicity.
        SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
        this->appendLine(p3);
        return;
    }

    Sk2f tan0, tan1, c;
    if (!is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan1, c) && maxSubdivisions) {
        this->chopCubicAtMidTangent<&GrCCGeometry::appendCubicApproximation>(p0, p1, p2, p3,
                                                                             tan0, tan1,
                                                                             maxSubdivisions - 1);
        return;
    }

    if (maxSubdivisions) {
        this->appendMonotonicQuadratics(p0, c, p3);
    } else {
        this->appendSingleMonotonicQuadratic(p0, c, p3);
    }
}

void GrCCGeometry::conicTo(const SkPoint P[3], float w) {
    SkASSERT(fBuildingContour);
    SkASSERT(P[0] == fPoints.back());
    Sk2f p0 = Sk2f::Load(P);
    Sk2f p1 = Sk2f::Load(P+1);
    Sk2f p2 = Sk2f::Load(P+2);

    // Don't crunch on the curve if it is nearly flat (or just very small). Collinear control points
    // can break the midtangent-finding math below.
    if (are_collinear(p0, p1, p2)) {
        this->appendLine(p2);
        return;
    }

    Sk2f tan0 = p1 - p0;
    Sk2f tan1 = p2 - p1;
    // The derivative of a conic has a cumbersome order-4 denominator. However, this isn't necessary
    // if we are only interested in a vector in the same *direction* as a given tangent line. Since
    // the denominator scales dx and dy uniformly, we can throw it out completely after evaluating
    // the derivative with the standard quotient rule. This leaves us with a simpler quadratic
    // function that we use to find the midtangent.
    float midT = find_midtangent(tan0, tan1, 1, (w - 1) * (p2 - p0),
                                             1, (p2 - p0) - 2*w*(p1 - p0),
                                             1, w*(p1 - p0));
    // Use positive logic since NaN fails comparisons. (However midT should not be NaN since we cull
    // near-linear conics above. And while w=0 is flat, it's not a line and has valid midtangents.)
    if (!(midT > 0 && midT < 1)) {
        // The conic is flat. Otherwise there would be a real midtangent inside T=0..1.
        this->appendLine(p2);
        return;
    }

    // Evaluate the conic at midT.
    Sk4f p3d0 = Sk4f(p0[0], p0[1], 1, 0);
    Sk4f p3d1 = Sk4f(p1[0], p1[1], 1, 0) * w;
    Sk4f p3d2 = Sk4f(p2[0], p2[1], 1, 0);
    Sk4f midT4 = midT;

    Sk4f p3d01 = lerp(p3d0, p3d1, midT4);
    Sk4f p3d12 = lerp(p3d1, p3d2, midT4);
    Sk4f p3d012 = lerp(p3d01, p3d12, midT4);

    Sk2f midpoint = Sk2f(p3d012[0], p3d012[1]) / p3d012[2];

    if (are_collinear(p0, midpoint, p2, 1) || // Check if the curve is within one pixel of flat.
        ((midpoint - p1).abs() < 1).allTrue()) { // Check if the curve is almost a triangle.
        // Draw the conic as a triangle instead. Our AA approximation won't do well if the curve
        // gets wrapped too tightly, and if we get too close to p1 we will pick up artifacts from
        // the implicit function's reflection.
        this->appendLine(midpoint);
        this->appendLine(p2);
        return;
    }

    if (!is_convex_curve_monotonic(p0, tan0, p2, tan1)) {
        // Chop the conic at midtangent to produce two monotonic segments.
        Sk2f ww = Sk2f(p3d01[2], p3d12[2]) * Sk2f(p3d012[2]).rsqrt();
        this->appendMonotonicConic(p0, Sk2f(p3d01[0], p3d01[1]) / p3d01[2], midpoint, ww[0]);
        this->appendMonotonicConic(midpoint, Sk2f(p3d12[0], p3d12[1]) / p3d12[2], p2, ww[1]);
        return;
    }

    this->appendMonotonicConic(p0, p1, p2, w);
}

void GrCCGeometry::appendMonotonicConic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, float w) {
    SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));

    // Don't send curves to the GPU if we know they are nearly flat (or just very small).
    if (are_collinear(p0, p1, p2)) {
        this->appendLine(p2);
        return;
    }

    p1.store(&fPoints.push_back());
    p2.store(&fPoints.push_back());
    fConicWeights.push_back(w);
    fVerbs.push_back(Verb::kMonotonicConicTo);
    ++fCurrContourTallies.fConics;
}

GrCCGeometry::PrimitiveTallies GrCCGeometry::endContour() {
    SkASSERT(fBuildingContour);
    SkASSERT(fVerbs.count() >= fCurrContourTallies.fTriangles);

    // The fTriangles field currently contains this contour's starting verb index. We can now
    // use it to calculate the size of the contour's fan.
    int fanSize = fVerbs.count() - fCurrContourTallies.fTriangles;
    if (fPoints.back() == fCurrAnchorPoint) {
        --fanSize;
        fVerbs.push_back(Verb::kEndClosedContour);
    } else {
        fVerbs.push_back(Verb::kEndOpenContour);
    }

    fCurrContourTallies.fTriangles = SkTMax(fanSize - 2, 0);

    SkDEBUGCODE(fBuildingContour = false);
    return fCurrContourTallies;
}