aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/batches/GrTInstanceBatch.h
blob: e314959bfcd9c7d4ff0745ff336c2302f219f389 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
/*
 * Copyright 2015 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef GrTInstanceBatch_DEFINED
#define GrTInstanceBatch_DEFINED

#include "GrVertexBatch.h"

#include "GrBatchFlushState.h"

/**
 * GrTInstanceBatch is an optional template to help with writing batches
 * To use this template, The 'Impl' must define the following statics:
 *     A Geometry struct
 *
 *     static const int kVertsPerInstance
 *     static const int kIndicesPerInstance
 *
 *     const char* Name()
 *
 *     void InvariantOutputCoverage(GrInitInvariantOutput* out)
 *
 *     void SetBounds(const Geometry& seedGeometry, SkRect* outBounds)
 *
 *     bool CanCombine(const Geometry& mine, const Geometry& theirs,
 *                     const GrPipelineOptimizations&)
 *
 *     const GrGeometryProcessor* CreateGP(const Geometry& seedGeometry,
 *                                         const GrPipelineOptimizations& opts)
 *
 *     const GrIndexBuffer* GetIndexBuffer(GrResourceProvider*)
 *
 *     Tesselate(intptr_t vertices, size_t vertexStride, const Geometry& geo,
 *               const GrPipelineOptimizations& opts)
 */
template <typename Impl>
class GrTInstanceBatch : public GrVertexBatch {
public:
    typedef typename Impl::Geometry Geometry;

    static GrTInstanceBatch* Create() { return new GrTInstanceBatch; }

    const char* name() const override { return Impl::Name(); }

    void getInvariantOutputColor(GrInitInvariantOutput* out) const override {
        // When this is called on a batch, there is only one geometry bundle
        out->setKnownFourComponents(fGeoData[0].fColor);
    }

    void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override {
        Impl::InitInvariantOutputCoverage(out);
    }

    void initBatchTracker(const GrPipelineOptimizations& opt) override {
        opt.getOverrideColorIfSet(&fGeoData[0].fColor);
        fOpts = opt;
    }

    SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; }

    // to avoid even the initial copy of the struct, we have a getter for the first item which
    // is used to seed the batch with its initial geometry.  After seeding, the client should call
    // init() so the Batch can initialize itself
    Geometry* geometry() { return &fGeoData[0]; }
    void init() {
        const Geometry& geo = fGeoData[0];
        Impl::SetBounds(geo, &fBounds);
    }

private:
    GrTInstanceBatch() {
        this->initClassID<GrTInstanceBatch<Impl>>();

        // Push back an initial geometry
        fGeoData.push_back();
    }

    void onPrepareDraws(Target* target) override {
        SkAutoTUnref<const GrGeometryProcessor> gp(Impl::CreateGP(this->seedGeometry(), fOpts));
        if (!gp) {
            SkDebugf("Couldn't create GrGeometryProcessor\n");
            return;
        }

        target->initDraw(gp, this->pipeline());

        size_t vertexStride = gp->getVertexStride();
        int instanceCount = fGeoData.count();

        SkAutoTUnref<const GrIndexBuffer> indexBuffer(
                Impl::GetIndexBuffer(target->resourceProvider()));
        InstancedHelper helper;
        void* vertices = helper.init(target, kTriangles_GrPrimitiveType, vertexStride,
                                     indexBuffer, Impl::kVertsPerInstance,
                                     Impl::kIndicesPerInstance, instanceCount);
        if (!vertices || !indexBuffer) {
            SkDebugf("Could not allocate vertices\n");
            return;
        }

        for (int i = 0; i < instanceCount; i++) {
            intptr_t verts = reinterpret_cast<intptr_t>(vertices) +
                             i * Impl::kVertsPerInstance * vertexStride;
            Impl::Tesselate(verts, vertexStride, fGeoData[i], fOpts);
        }
        helper.recordDraw(target);
    }

    const Geometry& seedGeometry() const { return fGeoData[0]; }

    bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override {
        GrTInstanceBatch* that = t->cast<GrTInstanceBatch>();
        if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(),
                                    that->bounds(), caps)) {
            return false;
        }

        if (!Impl::CanCombine(this->seedGeometry(), that->seedGeometry(), fOpts)) {
            return false;
        }

        // In the event of two batches, one who can tweak, one who cannot, we just fall back to
        // not tweaking
        if (fOpts.canTweakAlphaForCoverage() && !that->fOpts.canTweakAlphaForCoverage()) {
            fOpts = that->fOpts;
        }

        fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin());
        this->joinBounds(that->bounds());
        return true;
    }

    GrPipelineOptimizations fOpts;
    SkSTArray<1, Geometry, true> fGeoData;
};

#endif