1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
|
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrNonAAStrokeRectBatch.h"
#include "GrBatchTest.h"
#include "GrBatchFlushState.h"
#include "GrColor.h"
#include "GrDefaultGeoProcFactory.h"
#include "GrVertexBatch.h"
#include "SkRandom.h"
/* create a triangle strip that strokes the specified rect. There are 8
unique vertices, but we repeat the last 2 to close up. Alternatively we
could use an indices array, and then only send 8 verts, but not sure that
would be faster.
*/
static void init_stroke_rect_strip(SkPoint verts[10], const SkRect& rect, SkScalar width) {
const SkScalar rad = SkScalarHalf(width);
// TODO we should be able to enable this assert, but we'd have to filter these draws
// this is a bug
//SkASSERT(rad < rect.width() / 2 && rad < rect.height() / 2);
verts[0].set(rect.fLeft + rad, rect.fTop + rad);
verts[1].set(rect.fLeft - rad, rect.fTop - rad);
verts[2].set(rect.fRight - rad, rect.fTop + rad);
verts[3].set(rect.fRight + rad, rect.fTop - rad);
verts[4].set(rect.fRight - rad, rect.fBottom - rad);
verts[5].set(rect.fRight + rad, rect.fBottom + rad);
verts[6].set(rect.fLeft + rad, rect.fBottom - rad);
verts[7].set(rect.fLeft - rad, rect.fBottom + rad);
verts[8] = verts[0];
verts[9] = verts[1];
}
class NonAAStrokeRectBatch : public GrVertexBatch {
public:
DEFINE_BATCH_CLASS_ID
struct Geometry {
SkMatrix fViewMatrix;
SkRect fRect;
SkScalar fStrokeWidth;
GrColor fColor;
};
static NonAAStrokeRectBatch* Create() {
return new NonAAStrokeRectBatch;
}
const char* name() const override { return "GrStrokeRectBatch"; }
void getInvariantOutputColor(GrInitInvariantOutput* out) const override {
// When this is called on a batch, there is only one geometry bundle
out->setKnownFourComponents(fGeoData[0].fColor);
}
void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override {
out->setKnownSingleComponent(0xff);
}
void append(GrColor color, const SkMatrix& viewMatrix, const SkRect& rect,
SkScalar strokeWidth) {
Geometry& geometry = fGeoData.push_back();
geometry.fViewMatrix = viewMatrix;
geometry.fRect = rect;
geometry.fStrokeWidth = strokeWidth;
geometry.fColor = color;
}
void appendAndUpdateBounds(GrColor color, const SkMatrix& viewMatrix, const SkRect& rect,
SkScalar strokeWidth, bool snapToPixelCenters) {
this->append(color, viewMatrix, rect, strokeWidth);
SkRect bounds;
this->setupBounds(&bounds, fGeoData.back(), snapToPixelCenters);
this->joinBounds(bounds);
}
void init(bool snapToPixelCenters) {
const Geometry& geo = fGeoData[0];
fBatch.fHairline = geo.fStrokeWidth == 0;
// setup bounds
this->setupBounds(&fBounds, geo, snapToPixelCenters);
}
private:
void setupBounds(SkRect* bounds, const Geometry& geo, bool snapToPixelCenters) {
*bounds = geo.fRect;
SkScalar rad = SkScalarHalf(geo.fStrokeWidth);
bounds->outset(rad, rad);
geo.fViewMatrix.mapRect(&fBounds);
// If our caller snaps to pixel centers then we have to round out the bounds
if (snapToPixelCenters) {
bounds->roundOut();
}
}
void onPrepareDraws(Target* target) override {
SkAutoTUnref<const GrGeometryProcessor> gp;
{
using namespace GrDefaultGeoProcFactory;
Color color(this->color());
Coverage coverage(this->coverageIgnored() ? Coverage::kSolid_Type :
Coverage::kNone_Type);
LocalCoords localCoords(this->usesLocalCoords() ? LocalCoords::kUsePosition_Type :
LocalCoords::kUnused_Type);
gp.reset(GrDefaultGeoProcFactory::Create(color, coverage, localCoords,
this->viewMatrix()));
}
target->initDraw(gp, this->pipeline());
size_t vertexStride = gp->getVertexStride();
SkASSERT(vertexStride == sizeof(GrDefaultGeoProcFactory::PositionAttr));
Geometry& args = fGeoData[0];
int vertexCount = kVertsPerHairlineRect;
if (args.fStrokeWidth > 0) {
vertexCount = kVertsPerStrokeRect;
}
const GrVertexBuffer* vertexBuffer;
int firstVertex;
void* verts = target->makeVertexSpace(vertexStride, vertexCount, &vertexBuffer,
&firstVertex);
if (!verts) {
SkDebugf("Could not allocate vertices\n");
return;
}
SkPoint* vertex = reinterpret_cast<SkPoint*>(verts);
GrPrimitiveType primType;
if (args.fStrokeWidth > 0) {;
primType = kTriangleStrip_GrPrimitiveType;
args.fRect.sort();
init_stroke_rect_strip(vertex, args.fRect, args.fStrokeWidth);
} else {
// hairline
primType = kLineStrip_GrPrimitiveType;
vertex[0].set(args.fRect.fLeft, args.fRect.fTop);
vertex[1].set(args.fRect.fRight, args.fRect.fTop);
vertex[2].set(args.fRect.fRight, args.fRect.fBottom);
vertex[3].set(args.fRect.fLeft, args.fRect.fBottom);
vertex[4].set(args.fRect.fLeft, args.fRect.fTop);
}
GrVertices vertices;
vertices.init(primType, vertexBuffer, firstVertex, vertexCount);
target->draw(vertices);
}
void initBatchTracker(const GrPipelineOptimizations& opt) override {
// Handle any color overrides
if (!opt.readsColor()) {
fGeoData[0].fColor = GrColor_ILLEGAL;
}
opt.getOverrideColorIfSet(&fGeoData[0].fColor);
// setup batch properties
fBatch.fColorIgnored = !opt.readsColor();
fBatch.fColor = fGeoData[0].fColor;
fBatch.fUsesLocalCoords = opt.readsLocalCoords();
fBatch.fCoverageIgnored = !opt.readsCoverage();
}
NonAAStrokeRectBatch() : INHERITED(ClassID()) {}
GrColor color() const { return fBatch.fColor; }
bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; }
bool colorIgnored() const { return fBatch.fColorIgnored; }
const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; }
bool hairline() const { return fBatch.fHairline; }
bool coverageIgnored() const { return fBatch.fCoverageIgnored; }
bool onCombineIfPossible(GrBatch* t, const GrCaps&) override {
// if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *t->pipeline(),
// t->bounds(), caps)) {
// return false;
// }
// GrStrokeRectBatch* that = t->cast<StrokeRectBatch>();
// NonAA stroke rects cannot batch right now
// TODO make these batchable
return false;
}
struct BatchTracker {
GrColor fColor;
bool fUsesLocalCoords;
bool fColorIgnored;
bool fCoverageIgnored;
bool fHairline;
};
const static int kVertsPerHairlineRect = 5;
const static int kVertsPerStrokeRect = 10;
BatchTracker fBatch;
SkSTArray<1, Geometry, true> fGeoData;
typedef GrVertexBatch INHERITED;
};
namespace GrNonAAStrokeRectBatch {
GrDrawBatch* Create(GrColor color,
const SkMatrix& viewMatrix,
const SkRect& rect,
SkScalar strokeWidth,
bool snapToPixelCenters) {
NonAAStrokeRectBatch* batch = NonAAStrokeRectBatch::Create();
batch->append(color, viewMatrix, rect, strokeWidth);
batch->init(snapToPixelCenters);
return batch;
}
void Append(GrBatch* origBatch,
GrColor color,
const SkMatrix& viewMatrix,
const SkRect& rect,
SkScalar strokeWidth,
bool snapToPixelCenters) {
NonAAStrokeRectBatch* batch = origBatch->cast<NonAAStrokeRectBatch>();
batch->appendAndUpdateBounds(color, viewMatrix, rect, strokeWidth, snapToPixelCenters);
}
};
#ifdef GR_TEST_UTILS
DRAW_BATCH_TEST_DEFINE(NonAAStrokeRectBatch) {
SkMatrix viewMatrix = GrTest::TestMatrix(random);
GrColor color = GrRandomColor(random);
SkRect rect = GrTest::TestRect(random);
SkScalar strokeWidth = random->nextBool() ? 0.0f : 1.0f;
return GrNonAAStrokeRectBatch::Create(color, viewMatrix, rect, strokeWidth, random->nextBool());
}
#endif
|