1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
|
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrDrawVerticesBatch.h"
#include "GrDefaultGeoProcFactory.h"
#include "GrInvariantOutput.h"
#include "GrOpFlushState.h"
static sk_sp<GrGeometryProcessor> set_vertex_attributes(bool hasLocalCoords,
int* colorOffset,
int* texOffset,
const SkMatrix& viewMatrix,
bool coverageIgnored) {
using namespace GrDefaultGeoProcFactory;
*texOffset = -1;
*colorOffset = -1;
Coverage coverage(coverageIgnored ? Coverage::kNone_Type : Coverage::kSolid_Type);
LocalCoords localCoords(hasLocalCoords ? LocalCoords::kHasExplicit_Type :
LocalCoords::kUsePosition_Type);
*colorOffset = sizeof(SkPoint);
if (hasLocalCoords) {
*texOffset = sizeof(SkPoint) + sizeof(GrColor);
}
return GrDefaultGeoProcFactory::Make(Color(Color::kAttribute_Type),
coverage, localCoords, viewMatrix);
}
GrDrawVerticesBatch::GrDrawVerticesBatch(GrColor color, GrPrimitiveType primitiveType,
const SkMatrix& viewMatrix,
const SkPoint* positions, int vertexCount,
const uint16_t* indices, int indexCount,
const GrColor* colors, const SkPoint* localCoords,
const SkRect& bounds)
: INHERITED(ClassID()) {
SkASSERT(positions);
fViewMatrix = viewMatrix;
Mesh& mesh = fMeshes.push_back();
mesh.fColor = color;
mesh.fPositions.append(vertexCount, positions);
if (indices) {
mesh.fIndices.append(indexCount, indices);
}
if (colors) {
fVariableColor = true;
mesh.fColors.append(vertexCount, colors);
} else {
fVariableColor = false;
}
if (localCoords) {
mesh.fLocalCoords.append(vertexCount, localCoords);
}
fVertexCount = vertexCount;
fIndexCount = indexCount;
fPrimitiveType = primitiveType;
IsZeroArea zeroArea;
if (GrIsPrimTypeLines(primitiveType) || kPoints_GrPrimitiveType == primitiveType) {
zeroArea = IsZeroArea::kYes;
} else {
zeroArea = IsZeroArea::kNo;
}
this->setBounds(bounds, HasAABloat::kNo, zeroArea);
}
void GrDrawVerticesBatch::computePipelineOptimizations(GrInitInvariantOutput* color,
GrInitInvariantOutput* coverage,
GrBatchToXPOverrides* overrides) const {
// When this is called on a batch, there is only one mesh
if (fVariableColor) {
color->setUnknownFourComponents();
} else {
color->setKnownFourComponents(fMeshes[0].fColor);
}
coverage->setKnownSingleComponent(0xff);
}
void GrDrawVerticesBatch::initBatchTracker(const GrXPOverridesForBatch& overrides) {
SkASSERT(fMeshes.count() == 1);
GrColor overrideColor;
if (overrides.getOverrideColorIfSet(&overrideColor)) {
fMeshes[0].fColor = overrideColor;
fMeshes[0].fColors.reset();
fVariableColor = false;
}
fCoverageIgnored = !overrides.readsCoverage();
if (!overrides.readsLocalCoords()) {
fMeshes[0].fLocalCoords.reset();
}
}
void GrDrawVerticesBatch::onPrepareDraws(Target* target) const {
bool hasLocalCoords = !fMeshes[0].fLocalCoords.isEmpty();
int colorOffset = -1, texOffset = -1;
sk_sp<GrGeometryProcessor> gp(set_vertex_attributes(hasLocalCoords, &colorOffset, &texOffset,
fViewMatrix, fCoverageIgnored));
size_t vertexStride = gp->getVertexStride();
SkASSERT(vertexStride == sizeof(SkPoint) + (hasLocalCoords ? sizeof(SkPoint) : 0)
+ sizeof(GrColor));
int instanceCount = fMeshes.count();
const GrBuffer* vertexBuffer;
int firstVertex;
void* verts = target->makeVertexSpace(vertexStride, fVertexCount, &vertexBuffer, &firstVertex);
if (!verts) {
SkDebugf("Could not allocate vertices\n");
return;
}
const GrBuffer* indexBuffer = nullptr;
int firstIndex = 0;
uint16_t* indices = nullptr;
if (!fMeshes[0].fIndices.isEmpty()) {
indices = target->makeIndexSpace(fIndexCount, &indexBuffer, &firstIndex);
if (!indices) {
SkDebugf("Could not allocate indices\n");
return;
}
}
int indexOffset = 0;
int vertexOffset = 0;
for (int i = 0; i < instanceCount; i++) {
const Mesh& mesh = fMeshes[i];
// TODO we can actually cache this interleaved and then just memcopy
if (indices) {
for (int j = 0; j < mesh.fIndices.count(); ++j, ++indexOffset) {
*(indices + indexOffset) = mesh.fIndices[j] + vertexOffset;
}
}
for (int j = 0; j < mesh.fPositions.count(); ++j) {
*((SkPoint*)verts) = mesh.fPositions[j];
if (mesh.fColors.isEmpty()) {
*(GrColor*)((intptr_t)verts + colorOffset) = mesh.fColor;
} else {
*(GrColor*)((intptr_t)verts + colorOffset) = mesh.fColors[j];
}
if (hasLocalCoords) {
*(SkPoint*)((intptr_t)verts + texOffset) = mesh.fLocalCoords[j];
}
verts = (void*)((intptr_t)verts + vertexStride);
vertexOffset++;
}
}
GrMesh mesh;
if (indices) {
mesh.initIndexed(this->primitiveType(), vertexBuffer, indexBuffer, firstVertex,
firstIndex, fVertexCount, fIndexCount);
} else {
mesh.init(this->primitiveType(), vertexBuffer, firstVertex, fVertexCount);
}
target->draw(gp.get(), mesh);
}
bool GrDrawVerticesBatch::onCombineIfPossible(GrOp* t, const GrCaps& caps) {
GrDrawVerticesBatch* that = t->cast<GrDrawVerticesBatch>();
if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(),
that->bounds(), caps)) {
return false;
}
if (!this->batchablePrimitiveType() || this->primitiveType() != that->primitiveType()) {
return false;
}
// We currently use a uniform viewmatrix for this batch
if (!fViewMatrix.cheapEqualTo(that->fViewMatrix)) {
return false;
}
if (fMeshes[0].fIndices.isEmpty() != that->fMeshes[0].fIndices.isEmpty()) {
return false;
}
if (fMeshes[0].fLocalCoords.isEmpty() != that->fMeshes[0].fLocalCoords.isEmpty()) {
return false;
}
if (!fVariableColor) {
if (that->fVariableColor || that->fMeshes[0].fColor != fMeshes[0].fColor) {
fVariableColor = true;
}
}
fMeshes.push_back_n(that->fMeshes.count(), that->fMeshes.begin());
fVertexCount += that->fVertexCount;
fIndexCount += that->fIndexCount;
this->joinBounds(*that);
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef GR_TEST_UTILS
#include "GrBatchTest.h"
static uint32_t seed_vertices(GrPrimitiveType type) {
switch (type) {
case kTriangles_GrPrimitiveType:
case kTriangleStrip_GrPrimitiveType:
case kTriangleFan_GrPrimitiveType:
return 3;
case kPoints_GrPrimitiveType:
return 1;
case kLines_GrPrimitiveType:
case kLineStrip_GrPrimitiveType:
return 2;
}
SkFAIL("Incomplete switch\n");
return 0;
}
static uint32_t primitive_vertices(GrPrimitiveType type) {
switch (type) {
case kTriangles_GrPrimitiveType:
return 3;
case kLines_GrPrimitiveType:
return 2;
case kTriangleStrip_GrPrimitiveType:
case kTriangleFan_GrPrimitiveType:
case kPoints_GrPrimitiveType:
case kLineStrip_GrPrimitiveType:
return 1;
}
SkFAIL("Incomplete switch\n");
return 0;
}
static SkPoint random_point(SkRandom* random, SkScalar min, SkScalar max) {
SkPoint p;
p.fX = random->nextRangeScalar(min, max);
p.fY = random->nextRangeScalar(min, max);
return p;
}
static void randomize_params(size_t count, size_t maxVertex, SkScalar min, SkScalar max,
SkRandom* random,
SkTArray<SkPoint>* positions,
SkTArray<SkPoint>* texCoords, bool hasTexCoords,
SkTArray<GrColor>* colors, bool hasColors,
SkTArray<uint16_t>* indices, bool hasIndices) {
for (uint32_t v = 0; v < count; v++) {
positions->push_back(random_point(random, min, max));
if (hasTexCoords) {
texCoords->push_back(random_point(random, min, max));
}
if (hasColors) {
colors->push_back(GrRandomColor(random));
}
if (hasIndices) {
SkASSERT(maxVertex <= SK_MaxU16);
indices->push_back(random->nextULessThan((uint16_t)maxVertex));
}
}
}
DRAW_BATCH_TEST_DEFINE(VerticesBatch) {
GrPrimitiveType type = GrPrimitiveType(random->nextULessThan(kLast_GrPrimitiveType + 1));
uint32_t primitiveCount = random->nextRangeU(1, 100);
// TODO make 'sensible' indexbuffers
SkTArray<SkPoint> positions;
SkTArray<SkPoint> texCoords;
SkTArray<GrColor> colors;
SkTArray<uint16_t> indices;
bool hasTexCoords = random->nextBool();
bool hasIndices = random->nextBool();
bool hasColors = random->nextBool();
uint32_t vertexCount = seed_vertices(type) + (primitiveCount - 1) * primitive_vertices(type);
static const SkScalar kMinVertExtent = -100.f;
static const SkScalar kMaxVertExtent = 100.f;
randomize_params(seed_vertices(type), vertexCount, kMinVertExtent, kMaxVertExtent,
random,
&positions,
&texCoords, hasTexCoords,
&colors, hasColors,
&indices, hasIndices);
for (uint32_t i = 1; i < primitiveCount; i++) {
randomize_params(primitive_vertices(type), vertexCount, kMinVertExtent, kMaxVertExtent,
random,
&positions,
&texCoords, hasTexCoords,
&colors, hasColors,
&indices, hasIndices);
}
SkMatrix viewMatrix = GrTest::TestMatrix(random);
SkRect bounds;
SkDEBUGCODE(bool result = ) bounds.setBoundsCheck(positions.begin(), vertexCount);
SkASSERT(result);
viewMatrix.mapRect(&bounds);
GrColor color = GrRandomColor(random);
return new GrDrawVerticesBatch(color, type, viewMatrix, positions.begin(), vertexCount,
indices.begin(), hasIndices ? vertexCount : 0,
colors.begin(), texCoords.begin(), bounds);
}
#endif
|