aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/batches/GrAAHairLinePathRenderer.cpp
blob: 732d694b45ce98dd41a4a22f6e09f7a53fd32ee7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "GrAAHairLinePathRenderer.h"

#include "GrBatchTest.h"
#include "GrBuffer.h"
#include "GrCaps.h"
#include "GrContext.h"
#include "GrDefaultGeoProcFactory.h"
#include "GrOpFlushState.h"
#include "GrPathUtils.h"
#include "GrPipelineBuilder.h"
#include "GrProcessor.h"
#include "GrResourceProvider.h"
#include "SkGeometry.h"
#include "SkStroke.h"
#include "SkTemplates.h"

#include "batches/GrMeshDrawOp.h"

#include "effects/GrBezierEffect.h"

#define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true>

// quadratics are rendered as 5-sided polys in order to bound the
// AA stroke around the center-curve. See comments in push_quad_index_buffer and
// bloat_quad. Quadratics and conics share an index buffer

// lines are rendered as:
//      *______________*
//      |\ -_______   /|
//      | \        \ / |
//      |  *--------*  |
//      | /  ______/ \ |
//      */_-__________\*
// For: 6 vertices and 18 indices (for 6 triangles)

// Each quadratic is rendered as a five sided polygon. This poly bounds
// the quadratic's bounding triangle but has been expanded so that the
// 1-pixel wide area around the curve is inside the poly.
// If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
// that is rendered would look like this:
//              b0
//              b
//
//     a0              c0
//      a            c
//       a1       c1
// Each is drawn as three triangles ((a0,a1,b0), (b0,c1,c0), (a1,c1,b0))
// specified by these 9 indices:
static const uint16_t kQuadIdxBufPattern[] = {
    0, 1, 2,
    2, 4, 3,
    1, 4, 2
};

static const int kIdxsPerQuad = SK_ARRAY_COUNT(kQuadIdxBufPattern);
static const int kQuadNumVertices = 5;
static const int kQuadsNumInIdxBuffer = 256;
GR_DECLARE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);

static const GrBuffer* ref_quads_index_buffer(GrResourceProvider* resourceProvider) {
    GR_DEFINE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
    return resourceProvider->findOrCreateInstancedIndexBuffer(
        kQuadIdxBufPattern, kIdxsPerQuad, kQuadsNumInIdxBuffer, kQuadNumVertices,
        gQuadsIndexBufferKey);
}


// Each line segment is rendered as two quads and two triangles.
// p0 and p1 have alpha = 1 while all other points have alpha = 0.
// The four external points are offset 1 pixel perpendicular to the
// line and half a pixel parallel to the line.
//
// p4                  p5
//      p0         p1
// p2                  p3
//
// Each is drawn as six triangles specified by these 18 indices:

static const uint16_t kLineSegIdxBufPattern[] = {
    0, 1, 3,
    0, 3, 2,
    0, 4, 5,
    0, 5, 1,
    0, 2, 4,
    1, 5, 3
};

static const int kIdxsPerLineSeg = SK_ARRAY_COUNT(kLineSegIdxBufPattern);
static const int kLineSegNumVertices = 6;
static const int kLineSegsNumInIdxBuffer = 256;

GR_DECLARE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);

static const GrBuffer* ref_lines_index_buffer(GrResourceProvider* resourceProvider) {
    GR_DEFINE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
    return resourceProvider->findOrCreateInstancedIndexBuffer(
        kLineSegIdxBufPattern, kIdxsPerLineSeg,  kLineSegsNumInIdxBuffer, kLineSegNumVertices,
        gLinesIndexBufferKey);
}

// Takes 178th time of logf on Z600 / VC2010
static int get_float_exp(float x) {
    GR_STATIC_ASSERT(sizeof(int) == sizeof(float));
#ifdef SK_DEBUG
    static bool tested;
    if (!tested) {
        tested = true;
        SkASSERT(get_float_exp(0.25f) == -2);
        SkASSERT(get_float_exp(0.3f) == -2);
        SkASSERT(get_float_exp(0.5f) == -1);
        SkASSERT(get_float_exp(1.f) == 0);
        SkASSERT(get_float_exp(2.f) == 1);
        SkASSERT(get_float_exp(2.5f) == 1);
        SkASSERT(get_float_exp(8.f) == 3);
        SkASSERT(get_float_exp(100.f) == 6);
        SkASSERT(get_float_exp(1000.f) == 9);
        SkASSERT(get_float_exp(1024.f) == 10);
        SkASSERT(get_float_exp(3000000.f) == 21);
    }
#endif
    const int* iptr = (const int*)&x;
    return (((*iptr) & 0x7f800000) >> 23) - 127;
}

// Uses the max curvature function for quads to estimate
// where to chop the conic. If the max curvature is not
// found along the curve segment it will return 1 and
// dst[0] is the original conic. If it returns 2 the dst[0]
// and dst[1] are the two new conics.
static int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
    SkScalar t = SkFindQuadMaxCurvature(src);
    if (t == 0) {
        if (dst) {
            dst[0].set(src, weight);
        }
        return 1;
    } else {
        if (dst) {
            SkConic conic;
            conic.set(src, weight);
            if (!conic.chopAt(t, dst)) {
                dst[0].set(src, weight);
                return 1;
            }
        }
        return 2;
    }
}

// Calls split_conic on the entire conic and then once more on each subsection.
// Most cases will result in either 1 conic (chop point is not within t range)
// or 3 points (split once and then one subsection is split again).
static int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
    SkConic dstTemp[2];
    int conicCnt = split_conic(src, dstTemp, weight);
    if (2 == conicCnt) {
        int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
        conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
    } else {
        dst[0] = dstTemp[0];
    }
    return conicCnt;
}

// returns 0 if quad/conic is degen or close to it
// in this case approx the path with lines
// otherwise returns 1
static int is_degen_quad_or_conic(const SkPoint p[3], SkScalar* dsqd) {
    static const SkScalar gDegenerateToLineTol = GrPathUtils::kDefaultTolerance;
    static const SkScalar gDegenerateToLineTolSqd =
        SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol);

    if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd ||
        p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) {
        return 1;
    }

    *dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]);
    if (*dsqd < gDegenerateToLineTolSqd) {
        return 1;
    }

    if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) {
        return 1;
    }
    return 0;
}

static int is_degen_quad_or_conic(const SkPoint p[3]) {
    SkScalar dsqd;
    return is_degen_quad_or_conic(p, &dsqd);
}

// we subdivide the quads to avoid huge overfill
// if it returns -1 then should be drawn as lines
static int num_quad_subdivs(const SkPoint p[3]) {
    SkScalar dsqd;
    if (is_degen_quad_or_conic(p, &dsqd)) {
        return -1;
    }

    // tolerance of triangle height in pixels
    // tuned on windows  Quadro FX 380 / Z600
    // trade off of fill vs cpu time on verts
    // maybe different when do this using gpu (geo or tess shaders)
    static const SkScalar gSubdivTol = 175 * SK_Scalar1;

    if (dsqd <= SkScalarMul(gSubdivTol, gSubdivTol)) {
        return 0;
    } else {
        static const int kMaxSub = 4;
        // subdividing the quad reduces d by 4. so we want x = log4(d/tol)
        // = log4(d*d/tol*tol)/2
        // = log2(d*d/tol*tol)

        // +1 since we're ignoring the mantissa contribution.
        int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
        log = SkTMin(SkTMax(0, log), kMaxSub);
        return log;
    }
}

/**
 * Generates the lines and quads to be rendered. Lines are always recorded in
 * device space. We will do a device space bloat to account for the 1pixel
 * thickness.
 * Quads are recorded in device space unless m contains
 * perspective, then in they are in src space. We do this because we will
 * subdivide large quads to reduce over-fill. This subdivision has to be
 * performed before applying the perspective matrix.
 */
static int gather_lines_and_quads(const SkPath& path,
                                  const SkMatrix& m,
                                  const SkIRect& devClipBounds,
                                  GrAAHairLinePathRenderer::PtArray* lines,
                                  GrAAHairLinePathRenderer::PtArray* quads,
                                  GrAAHairLinePathRenderer::PtArray* conics,
                                  GrAAHairLinePathRenderer::IntArray* quadSubdivCnts,
                                  GrAAHairLinePathRenderer::FloatArray* conicWeights) {
    SkPath::Iter iter(path, false);

    int totalQuadCount = 0;
    SkRect bounds;
    SkIRect ibounds;

    bool persp = m.hasPerspective();

    for (;;) {
        SkPoint pathPts[4];
        SkPoint devPts[4];
        SkPath::Verb verb = iter.next(pathPts);
        switch (verb) {
            case SkPath::kConic_Verb: {
                SkConic dst[4];
                // We chop the conics to create tighter clipping to hide error
                // that appears near max curvature of very thin conics. Thin
                // hyperbolas with high weight still show error.
                int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
                for (int i = 0; i < conicCnt; ++i) {
                    SkPoint* chopPnts = dst[i].fPts;
                    m.mapPoints(devPts, chopPnts, 3);
                    bounds.setBounds(devPts, 3);
                    bounds.outset(SK_Scalar1, SK_Scalar1);
                    bounds.roundOut(&ibounds);
                    if (SkIRect::Intersects(devClipBounds, ibounds)) {
                        if (is_degen_quad_or_conic(devPts)) {
                            SkPoint* pts = lines->push_back_n(4);
                            pts[0] = devPts[0];
                            pts[1] = devPts[1];
                            pts[2] = devPts[1];
                            pts[3] = devPts[2];
                        } else {
                            // when in perspective keep conics in src space
                            SkPoint* cPts = persp ? chopPnts : devPts;
                            SkPoint* pts = conics->push_back_n(3);
                            pts[0] = cPts[0];
                            pts[1] = cPts[1];
                            pts[2] = cPts[2];
                            conicWeights->push_back() = dst[i].fW;
                        }
                    }
                }
                break;
            }
            case SkPath::kMove_Verb:
                break;
            case SkPath::kLine_Verb:
                m.mapPoints(devPts, pathPts, 2);
                bounds.setBounds(devPts, 2);
                bounds.outset(SK_Scalar1, SK_Scalar1);
                bounds.roundOut(&ibounds);
                if (SkIRect::Intersects(devClipBounds, ibounds)) {
                    SkPoint* pts = lines->push_back_n(2);
                    pts[0] = devPts[0];
                    pts[1] = devPts[1];
                }
                break;
            case SkPath::kQuad_Verb: {
                SkPoint choppedPts[5];
                // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
                // When it is degenerate it allows the approximation with lines to work since the
                // chop point (if there is one) will be at the parabola's vertex. In the nearly
                // degenerate the QuadUVMatrix computed for the points is almost singular which
                // can cause rendering artifacts.
                int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
                for (int i = 0; i < n; ++i) {
                    SkPoint* quadPts = choppedPts + i * 2;
                    m.mapPoints(devPts, quadPts, 3);
                    bounds.setBounds(devPts, 3);
                    bounds.outset(SK_Scalar1, SK_Scalar1);
                    bounds.roundOut(&ibounds);

                    if (SkIRect::Intersects(devClipBounds, ibounds)) {
                        int subdiv = num_quad_subdivs(devPts);
                        SkASSERT(subdiv >= -1);
                        if (-1 == subdiv) {
                            SkPoint* pts = lines->push_back_n(4);
                            pts[0] = devPts[0];
                            pts[1] = devPts[1];
                            pts[2] = devPts[1];
                            pts[3] = devPts[2];
                        } else {
                            // when in perspective keep quads in src space
                            SkPoint* qPts = persp ? quadPts : devPts;
                            SkPoint* pts = quads->push_back_n(3);
                            pts[0] = qPts[0];
                            pts[1] = qPts[1];
                            pts[2] = qPts[2];
                            quadSubdivCnts->push_back() = subdiv;
                            totalQuadCount += 1 << subdiv;
                        }
                    }
                }
                break;
            }
            case SkPath::kCubic_Verb:
                m.mapPoints(devPts, pathPts, 4);
                bounds.setBounds(devPts, 4);
                bounds.outset(SK_Scalar1, SK_Scalar1);
                bounds.roundOut(&ibounds);
                if (SkIRect::Intersects(devClipBounds, ibounds)) {
                    PREALLOC_PTARRAY(32) q;
                    // We convert cubics to quadratics (for now).
                    // In perspective have to do conversion in src space.
                    if (persp) {
                        SkScalar tolScale =
                            GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m, path.getBounds());
                        GrPathUtils::convertCubicToQuads(pathPts, tolScale, &q);
                    } else {
                        GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, &q);
                    }
                    for (int i = 0; i < q.count(); i += 3) {
                        SkPoint* qInDevSpace;
                        // bounds has to be calculated in device space, but q is
                        // in src space when there is perspective.
                        if (persp) {
                            m.mapPoints(devPts, &q[i], 3);
                            bounds.setBounds(devPts, 3);
                            qInDevSpace = devPts;
                        } else {
                            bounds.setBounds(&q[i], 3);
                            qInDevSpace = &q[i];
                        }
                        bounds.outset(SK_Scalar1, SK_Scalar1);
                        bounds.roundOut(&ibounds);
                        if (SkIRect::Intersects(devClipBounds, ibounds)) {
                            int subdiv = num_quad_subdivs(qInDevSpace);
                            SkASSERT(subdiv >= -1);
                            if (-1 == subdiv) {
                                SkPoint* pts = lines->push_back_n(4);
                                // lines should always be in device coords
                                pts[0] = qInDevSpace[0];
                                pts[1] = qInDevSpace[1];
                                pts[2] = qInDevSpace[1];
                                pts[3] = qInDevSpace[2];
                            } else {
                                SkPoint* pts = quads->push_back_n(3);
                                // q is already in src space when there is no
                                // perspective and dev coords otherwise.
                                pts[0] = q[0 + i];
                                pts[1] = q[1 + i];
                                pts[2] = q[2 + i];
                                quadSubdivCnts->push_back() = subdiv;
                                totalQuadCount += 1 << subdiv;
                            }
                        }
                    }
                }
                break;
            case SkPath::kClose_Verb:
                break;
            case SkPath::kDone_Verb:
                return totalQuadCount;
        }
    }
}

struct LineVertex {
    SkPoint fPos;
    float fCoverage;
};

struct BezierVertex {
    SkPoint fPos;
    union {
        struct {
            SkScalar fK;
            SkScalar fL;
            SkScalar fM;
        } fConic;
        SkVector   fQuadCoord;
        struct {
            SkScalar fBogus[4];
        };
    };
};

GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(SkPoint));

static void intersect_lines(const SkPoint& ptA, const SkVector& normA,
                            const SkPoint& ptB, const SkVector& normB,
                            SkPoint* result) {

    SkScalar lineAW = -normA.dot(ptA);
    SkScalar lineBW = -normB.dot(ptB);

    SkScalar wInv = SkScalarMul(normA.fX, normB.fY) -
        SkScalarMul(normA.fY, normB.fX);
    wInv = SkScalarInvert(wInv);

    result->fX = SkScalarMul(normA.fY, lineBW) - SkScalarMul(lineAW, normB.fY);
    result->fX = SkScalarMul(result->fX, wInv);

    result->fY = SkScalarMul(lineAW, normB.fX) - SkScalarMul(normA.fX, lineBW);
    result->fY = SkScalarMul(result->fY, wInv);
}

static void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kQuadNumVertices]) {
    // this should be in the src space, not dev coords, when we have perspective
    GrPathUtils::QuadUVMatrix DevToUV(qpts);
    DevToUV.apply<kQuadNumVertices, sizeof(BezierVertex), sizeof(SkPoint)>(verts);
}

static void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice,
                       const SkMatrix* toSrc, BezierVertex verts[kQuadNumVertices]) {
    SkASSERT(!toDevice == !toSrc);
    // original quad is specified by tri a,b,c
    SkPoint a = qpts[0];
    SkPoint b = qpts[1];
    SkPoint c = qpts[2];

    if (toDevice) {
        toDevice->mapPoints(&a, 1);
        toDevice->mapPoints(&b, 1);
        toDevice->mapPoints(&c, 1);
    }
    // make a new poly where we replace a and c by a 1-pixel wide edges orthog
    // to edges ab and bc:
    //
    //   before       |        after
    //                |              b0
    //         b      |
    //                |
    //                |     a0            c0
    // a         c    |        a1       c1
    //
    // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
    // respectively.
    BezierVertex& a0 = verts[0];
    BezierVertex& a1 = verts[1];
    BezierVertex& b0 = verts[2];
    BezierVertex& c0 = verts[3];
    BezierVertex& c1 = verts[4];

    SkVector ab = b;
    ab -= a;
    SkVector ac = c;
    ac -= a;
    SkVector cb = b;
    cb -= c;

    // We should have already handled degenerates
    SkASSERT(ab.length() > 0 && cb.length() > 0);

    ab.normalize();
    SkVector abN;
    abN.setOrthog(ab, SkVector::kLeft_Side);
    if (abN.dot(ac) > 0) {
        abN.negate();
    }

    cb.normalize();
    SkVector cbN;
    cbN.setOrthog(cb, SkVector::kLeft_Side);
    if (cbN.dot(ac) < 0) {
        cbN.negate();
    }

    a0.fPos = a;
    a0.fPos += abN;
    a1.fPos = a;
    a1.fPos -= abN;

    c0.fPos = c;
    c0.fPos += cbN;
    c1.fPos = c;
    c1.fPos -= cbN;

    intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);

    if (toSrc) {
        toSrc->mapPointsWithStride(&verts[0].fPos, sizeof(BezierVertex), kQuadNumVertices);
    }
}

// Equations based off of Loop-Blinn Quadratic GPU Rendering
// Input Parametric:
// P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
// Output Implicit:
// f(x, y, w) = f(P) = K^2 - LM
// K = dot(k, P), L = dot(l, P), M = dot(m, P)
// k, l, m are calculated in function GrPathUtils::getConicKLM
static void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kQuadNumVertices],
                             const SkScalar weight) {
    SkScalar klm[9];

    GrPathUtils::getConicKLM(p, weight, klm);

    for (int i = 0; i < kQuadNumVertices; ++i) {
        const SkPoint pnt = verts[i].fPos;
        verts[i].fConic.fK = pnt.fX * klm[0] + pnt.fY * klm[1] + klm[2];
        verts[i].fConic.fL = pnt.fX * klm[3] + pnt.fY * klm[4] + klm[5];
        verts[i].fConic.fM = pnt.fX * klm[6] + pnt.fY * klm[7] + klm[8];
    }
}

static void add_conics(const SkPoint p[3],
                       const SkScalar weight,
                       const SkMatrix* toDevice,
                       const SkMatrix* toSrc,
                       BezierVertex** vert) {
    bloat_quad(p, toDevice, toSrc, *vert);
    set_conic_coeffs(p, *vert, weight);
    *vert += kQuadNumVertices;
}

static void add_quads(const SkPoint p[3],
                      int subdiv,
                      const SkMatrix* toDevice,
                      const SkMatrix* toSrc,
                      BezierVertex** vert) {
    SkASSERT(subdiv >= 0);
    if (subdiv) {
        SkPoint newP[5];
        SkChopQuadAtHalf(p, newP);
        add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert);
        add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert);
    } else {
        bloat_quad(p, toDevice, toSrc, *vert);
        set_uv_quad(p, *vert);
        *vert += kQuadNumVertices;
    }
}

static void add_line(const SkPoint p[2],
                     const SkMatrix* toSrc,
                     uint8_t coverage,
                     LineVertex** vert) {
    const SkPoint& a = p[0];
    const SkPoint& b = p[1];

    SkVector ortho, vec = b;
    vec -= a;

    if (vec.setLength(SK_ScalarHalf)) {
        // Create a vector orthogonal to 'vec' and of unit length
        ortho.fX = 2.0f * vec.fY;
        ortho.fY = -2.0f * vec.fX;

        float floatCoverage = GrNormalizeByteToFloat(coverage);

        (*vert)[0].fPos = a;
        (*vert)[0].fCoverage = floatCoverage;
        (*vert)[1].fPos = b;
        (*vert)[1].fCoverage = floatCoverage;
        (*vert)[2].fPos = a - vec + ortho;
        (*vert)[2].fCoverage = 0;
        (*vert)[3].fPos = b + vec + ortho;
        (*vert)[3].fCoverage = 0;
        (*vert)[4].fPos = a - vec - ortho;
        (*vert)[4].fCoverage = 0;
        (*vert)[5].fPos = b + vec - ortho;
        (*vert)[5].fCoverage = 0;

        if (toSrc) {
            toSrc->mapPointsWithStride(&(*vert)->fPos,
                                       sizeof(LineVertex),
                                       kLineSegNumVertices);
        }
    } else {
        // just make it degenerate and likely offscreen
        for (int i = 0; i < kLineSegNumVertices; ++i) {
            (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
        }
    }

    *vert += kLineSegNumVertices;
}

///////////////////////////////////////////////////////////////////////////////

bool GrAAHairLinePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
    if (GrAAType::kCoverage != args.fAAType) {
        return false;
    }

    if (!IsStrokeHairlineOrEquivalent(args.fShape->style(), *args.fViewMatrix, nullptr)) {
        return false;
    }

    // We don't currently handle dashing in this class though perhaps we should.
    if (args.fShape->style().pathEffect()) {
        return false;
    }

    if (SkPath::kLine_SegmentMask == args.fShape->segmentMask() ||
        args.fShaderCaps->shaderDerivativeSupport()) {
        return true;
    }

    return false;
}

template <class VertexType>
bool check_bounds(const SkMatrix& viewMatrix, const SkRect& devBounds, void* vertices, int vCount)
{
    SkRect tolDevBounds = devBounds;
    // The bounds ought to be tight, but in perspective the below code runs the verts
    // through the view matrix to get back to dev coords, which can introduce imprecision.
    if (viewMatrix.hasPerspective()) {
        tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000);
    } else {
        // Non-persp matrices cause this path renderer to draw in device space.
        SkASSERT(viewMatrix.isIdentity());
    }
    SkRect actualBounds;

    VertexType* verts = reinterpret_cast<VertexType*>(vertices);
    bool first = true;
    for (int i = 0; i < vCount; ++i) {
        SkPoint pos = verts[i].fPos;
        // This is a hack to workaround the fact that we move some degenerate segments offscreen.
        if (SK_ScalarMax == pos.fX) {
            continue;
        }
        viewMatrix.mapPoints(&pos, 1);
        if (first) {
            actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY);
            first = false;
        } else {
            actualBounds.growToInclude(pos.fX, pos.fY);
        }
    }
    if (!first) {
        return tolDevBounds.contains(actualBounds);
    }

    return true;
}

class AAHairlineBatch : public GrMeshDrawOp {
public:
    DEFINE_OP_CLASS_ID

    AAHairlineBatch(GrColor color,
                    uint8_t coverage,
                    const SkMatrix& viewMatrix,
                    const SkPath& path,
                    SkIRect devClipBounds) : INHERITED(ClassID()) {
        fGeoData.emplace_back(Geometry{color, coverage, viewMatrix, path, devClipBounds});

        this->setTransformedBounds(path.getBounds(), viewMatrix, HasAABloat::kYes,
                                   IsZeroArea::kYes);
    }

    const char* name() const override { return "AAHairlineBatch"; }

    SkString dumpInfo() const override {
        SkString string;
        for (const auto& geo : fGeoData) {
            string.appendf("Color: 0x%08x Coverage: 0x%02x\n", geo.fColor, geo.fCoverage);
        }
        string.append(DumpPipelineInfo(*this->pipeline()));
        string.append(INHERITED::dumpInfo());
        return string;
    }

    void computePipelineOptimizations(GrInitInvariantOutput* color,
                                      GrInitInvariantOutput* coverage,
                                      GrBatchToXPOverrides* overrides) const override {
        // When this is called on a batch, there is only one geometry bundle
        color->setKnownFourComponents(fGeoData[0].fColor);
        coverage->setUnknownSingleComponent();
    }

private:
    void initBatchTracker(const GrXPOverridesForBatch& overrides) override {
        // Handle any color overrides
        if (!overrides.readsColor()) {
            fGeoData[0].fColor = GrColor_ILLEGAL;
        }
        overrides.getOverrideColorIfSet(&fGeoData[0].fColor);

        // setup batch properties
        fBatch.fColorIgnored = !overrides.readsColor();
        fBatch.fColor = fGeoData[0].fColor;
        fBatch.fUsesLocalCoords = overrides.readsLocalCoords();
        fBatch.fCoverageIgnored = !overrides.readsCoverage();
        fBatch.fCoverage = fGeoData[0].fCoverage;
    }

    void onPrepareDraws(Target*) const override;

    typedef SkTArray<SkPoint, true> PtArray;
    typedef SkTArray<int, true> IntArray;
    typedef SkTArray<float, true> FloatArray;

    bool onCombineIfPossible(GrOp* t, const GrCaps& caps) override {
        AAHairlineBatch* that = t->cast<AAHairlineBatch>();

        if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(),
                                    that->bounds(), caps)) {
            return false;
        }

        if (this->viewMatrix().hasPerspective() != that->viewMatrix().hasPerspective()) {
            return false;
        }

        // We go to identity if we don't have perspective
        if (this->viewMatrix().hasPerspective() &&
            !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
            return false;
        }

        // TODO we can actually batch hairlines if they are the same color in a kind of bulk method
        // but we haven't implemented this yet
        // TODO investigate going to vertex color and coverage?
        if (this->coverage() != that->coverage()) {
            return false;
        }

        if (this->color() != that->color()) {
            return false;
        }

        SkASSERT(this->usesLocalCoords() == that->usesLocalCoords());
        if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
            return false;
        }

        fGeoData.push_back_n(that->fGeoData.count(), that->fGeoData.begin());
        this->joinBounds(*that);
        return true;
    }

    GrColor color() const { return fBatch.fColor; }
    uint8_t coverage() const { return fBatch.fCoverage; }
    bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; }
    const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; }
    bool coverageIgnored() const { return fBatch.fCoverageIgnored; }


    struct Geometry {
        GrColor fColor;
        uint8_t fCoverage;
        SkMatrix fViewMatrix;
        SkPath fPath;
        SkIRect fDevClipBounds;
    };

    struct BatchTracker {
        GrColor fColor;
        uint8_t fCoverage;
        SkRect fDevBounds;
        bool fUsesLocalCoords;
        bool fColorIgnored;
        bool fCoverageIgnored;
    };

    BatchTracker fBatch;
    SkSTArray<1, Geometry, true> fGeoData;

    typedef GrMeshDrawOp INHERITED;
};

void AAHairlineBatch::onPrepareDraws(Target* target) const {
    // Setup the viewmatrix and localmatrix for the GrGeometryProcessor.
    SkMatrix invert;
    if (!this->viewMatrix().invert(&invert)) {
        return;
    }

    // we will transform to identity space if the viewmatrix does not have perspective
    bool hasPerspective = this->viewMatrix().hasPerspective();
    const SkMatrix* geometryProcessorViewM = &SkMatrix::I();
    const SkMatrix* geometryProcessorLocalM = &invert;
    const SkMatrix* toDevice = nullptr;
    const SkMatrix* toSrc = nullptr;
    if (hasPerspective) {
        geometryProcessorViewM = &this->viewMatrix();
        geometryProcessorLocalM = &SkMatrix::I();
        toDevice = &this->viewMatrix();
        toSrc = &invert;
    }

    // This is hand inlined for maximum performance.
    PREALLOC_PTARRAY(128) lines;
    PREALLOC_PTARRAY(128) quads;
    PREALLOC_PTARRAY(128) conics;
    IntArray qSubdivs;
    FloatArray cWeights;
    int quadCount = 0;

    int instanceCount = fGeoData.count();
    for (int i = 0; i < instanceCount; i++) {
        const Geometry& args = fGeoData[i];
        quadCount += gather_lines_and_quads(args.fPath, args.fViewMatrix, args.fDevClipBounds,
                                            &lines, &quads, &conics, &qSubdivs, &cWeights);
    }

    int lineCount = lines.count() / 2;
    int conicCount = conics.count() / 3;

    // do lines first
    if (lineCount) {
        sk_sp<GrGeometryProcessor> lineGP;
        {
            using namespace GrDefaultGeoProcFactory;

            Color color(this->color());
            Coverage coverage(Coverage::kAttribute_Type);
            LocalCoords localCoords(this->usesLocalCoords() ? LocalCoords::kUsePosition_Type :
                                    LocalCoords::kUnused_Type);
            localCoords.fMatrix = geometryProcessorLocalM;
            lineGP = GrDefaultGeoProcFactory::Make(color, coverage, localCoords,
                                                   *geometryProcessorViewM);
        }

        sk_sp<const GrBuffer> linesIndexBuffer(
            ref_lines_index_buffer(target->resourceProvider()));

        const GrBuffer* vertexBuffer;
        int firstVertex;

        size_t vertexStride = lineGP->getVertexStride();
        int vertexCount = kLineSegNumVertices * lineCount;
        LineVertex* verts = reinterpret_cast<LineVertex*>(
            target->makeVertexSpace(vertexStride, vertexCount, &vertexBuffer, &firstVertex));

        if (!verts|| !linesIndexBuffer) {
            SkDebugf("Could not allocate vertices\n");
            return;
        }

        SkASSERT(lineGP->getVertexStride() == sizeof(LineVertex));

        for (int i = 0; i < lineCount; ++i) {
            add_line(&lines[2*i], toSrc, this->coverage(), &verts);
        }

        GrMesh mesh;
        mesh.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, linesIndexBuffer.get(),
                           firstVertex, kLineSegNumVertices, kIdxsPerLineSeg, lineCount,
                           kLineSegsNumInIdxBuffer);
        target->draw(lineGP.get(), mesh);
    }

    if (quadCount || conicCount) {
        sk_sp<GrGeometryProcessor> quadGP(
            GrQuadEffect::Make(this->color(),
                               *geometryProcessorViewM,
                               kHairlineAA_GrProcessorEdgeType,
                               target->caps(),
                               *geometryProcessorLocalM,
                               this->usesLocalCoords(),
                               this->coverage()));

        sk_sp<GrGeometryProcessor> conicGP(
            GrConicEffect::Make(this->color(),
                                *geometryProcessorViewM,
                                kHairlineAA_GrProcessorEdgeType,
                                target->caps(),
                                *geometryProcessorLocalM,
                                this->usesLocalCoords(),
                                this->coverage()));

        const GrBuffer* vertexBuffer;
        int firstVertex;

        sk_sp<const GrBuffer> quadsIndexBuffer(
            ref_quads_index_buffer(target->resourceProvider()));

        size_t vertexStride = sizeof(BezierVertex);
        int vertexCount = kQuadNumVertices * quadCount + kQuadNumVertices * conicCount;
        void *vertices = target->makeVertexSpace(vertexStride, vertexCount,
                                                 &vertexBuffer, &firstVertex);

        if (!vertices || !quadsIndexBuffer) {
            SkDebugf("Could not allocate vertices\n");
            return;
        }

        // Setup vertices
        BezierVertex* bezVerts = reinterpret_cast<BezierVertex*>(vertices);

        int unsubdivQuadCnt = quads.count() / 3;
        for (int i = 0; i < unsubdivQuadCnt; ++i) {
            SkASSERT(qSubdivs[i] >= 0);
            add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &bezVerts);
        }

        // Start Conics
        for (int i = 0; i < conicCount; ++i) {
            add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &bezVerts);
        }

        if (quadCount > 0) {
            GrMesh mesh;
            mesh.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, quadsIndexBuffer.get(),
                               firstVertex, kQuadNumVertices, kIdxsPerQuad, quadCount,
                               kQuadsNumInIdxBuffer);
            target->draw(quadGP.get(), mesh);
            firstVertex += quadCount * kQuadNumVertices;
        }

        if (conicCount > 0) {
            GrMesh mesh;
            mesh.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, quadsIndexBuffer.get(),
                               firstVertex, kQuadNumVertices, kIdxsPerQuad, conicCount,
                               kQuadsNumInIdxBuffer);
            target->draw(conicGP.get(), mesh);
        }
    }
}

static GrDrawOp* create_hairline_batch(GrColor color,
                                       const SkMatrix& viewMatrix,
                                       const SkPath& path,
                                       const GrStyle& style,
                                       const SkIRect& devClipBounds) {
    SkScalar hairlineCoverage;
    uint8_t newCoverage = 0xff;
    if (GrPathRenderer::IsStrokeHairlineOrEquivalent(style, viewMatrix, &hairlineCoverage)) {
        newCoverage = SkScalarRoundToInt(hairlineCoverage * 0xff);
    }

    return new AAHairlineBatch(color, newCoverage, viewMatrix, path, devClipBounds);
}

bool GrAAHairLinePathRenderer::onDrawPath(const DrawPathArgs& args) {
    GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(),
                              "GrAAHairlinePathRenderer::onDrawPath");
    SkASSERT(!args.fRenderTargetContext->isUnifiedMultisampled());

    SkIRect devClipBounds;
    args.fClip->getConservativeBounds(args.fRenderTargetContext->width(),
                                      args.fRenderTargetContext->height(),
                                      &devClipBounds);

    SkPath path;
    args.fShape->asPath(&path);
    sk_sp<GrDrawOp> batch(create_hairline_batch(args.fPaint->getColor(),
                                                *args.fViewMatrix, path,
                                                args.fShape->style(), devClipBounds));

    GrPipelineBuilder pipelineBuilder(*args.fPaint, args.fAAType);
    pipelineBuilder.setUserStencil(args.fUserStencilSettings);
    args.fRenderTargetContext->addDrawOp(pipelineBuilder, *args.fClip, batch.get());

    return true;
}

///////////////////////////////////////////////////////////////////////////////////////////////////

#ifdef GR_TEST_UTILS

DRAW_BATCH_TEST_DEFINE(AAHairlineBatch) {
    GrColor color = GrRandomColor(random);
    SkMatrix viewMatrix = GrTest::TestMatrix(random);
    SkPath path = GrTest::TestPath(random);
    SkIRect devClipBounds;
    devClipBounds.setEmpty();
    return create_hairline_batch(color, viewMatrix, path, GrStyle::SimpleHairline(), devClipBounds);
}

#endif