1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrTextureToYUVPlanes.h"
#include "effects/GrSimpleTextureEffect.h"
#include "effects/GrYUVEffect.h"
#include "GrClip.h"
#include "GrContext.h"
#include "GrDrawContext.h"
#include "GrPaint.h"
#include "GrTextureProvider.h"
namespace {
using CreateFPProc = const GrFragmentProcessor* (*)(const GrFragmentProcessor*,
SkYUVColorSpace colorSpace);
};
static bool convert_texture(GrTexture* src, GrDrawContext* dst, int dstW, int dstH,
SkYUVColorSpace colorSpace, CreateFPProc proc) {
SkScalar xScale = SkIntToScalar(src->width()) / dstW / src->width();
SkScalar yScale = SkIntToScalar(src->height()) / dstH / src->height();
GrTextureParams::FilterMode filter;
if (dstW == src->width() && dstW == src->height()) {
filter = GrTextureParams::kNone_FilterMode;
} else {
filter = GrTextureParams::kBilerp_FilterMode;
}
SkAutoTUnref<const GrFragmentProcessor> fp(
GrSimpleTextureEffect::Create(src, SkMatrix::MakeScale(xScale, yScale), filter));
if (!fp) {
return false;
}
fp.reset(proc(fp, colorSpace));
if (!fp) {
return false;
}
GrPaint paint;
paint.setPorterDuffXPFactory(SkXfermode::kSrc_Mode);
paint.addColorFragmentProcessor(fp);
dst->drawRect(GrClip::WideOpen(), paint, SkMatrix::I(), SkRect::MakeIWH(dstW, dstH));
return true;
}
bool GrTextureToYUVPlanes(GrTexture* texture, const SkISize sizes[3], void* const planes[3],
const size_t rowBytes[3], SkYUVColorSpace colorSpace) {
if (GrContext* context = texture->getContext()) {
// Depending on the relative sizes of the y, u, and v planes we may do 1 to 3 draws/
// readbacks.
SkAutoTUnref<GrTexture> yuvTex;
SkAutoTUnref<GrTexture> yTex;
SkAutoTUnref<GrTexture> uvTex;
SkAutoTUnref<GrTexture> uTex;
SkAutoTUnref<GrTexture> vTex;
GrPixelConfig singleChannelPixelConfig;
if (context->caps()->isConfigRenderable(kAlpha_8_GrPixelConfig, false)) {
singleChannelPixelConfig = kAlpha_8_GrPixelConfig;
} else {
singleChannelPixelConfig = kRGBA_8888_GrPixelConfig;
}
// We issue draw(s) to convert from RGBA to Y, U, and V. All three planes may have different
// sizes however we optimize for two other cases - all planes are the same (1 draw to YUV),
// and U and V are the same but Y differs (2 draws, one for Y, one for UV).
if (sizes[0] == sizes[1] && sizes[1] == sizes[2]) {
GrSurfaceDesc yuvDesc;
yuvDesc.fConfig = kRGBA_8888_GrPixelConfig;
yuvDesc.fFlags = kRenderTarget_GrSurfaceFlag;
yuvDesc.fWidth = sizes[0].fWidth;
yuvDesc.fHeight = sizes[0].fHeight;
yuvTex.reset(context->textureProvider()->createApproxTexture(yuvDesc));
if (!yuvTex) {
return false;
}
} else {
GrSurfaceDesc yDesc;
yDesc.fConfig = singleChannelPixelConfig;
yDesc.fFlags = kRenderTarget_GrSurfaceFlag;
yDesc.fWidth = sizes[0].fWidth;
yDesc.fHeight = sizes[0].fHeight;
yTex.reset(context->textureProvider()->createApproxTexture(yDesc));
if (!yTex) {
return false;
}
if (sizes[1] == sizes[2]) {
GrSurfaceDesc uvDesc;
// TODO: Add support for GL_RG when available.
uvDesc.fConfig = kRGBA_8888_GrPixelConfig;
uvDesc.fFlags = kRenderTarget_GrSurfaceFlag;
uvDesc.fWidth = sizes[1].fWidth;
uvDesc.fHeight = sizes[1].fHeight;
uvTex.reset(context->textureProvider()->createApproxTexture(uvDesc));
if (!uvTex) {
return false;
}
} else {
GrSurfaceDesc uvDesc;
uvDesc.fConfig = singleChannelPixelConfig;
uvDesc.fFlags = kRenderTarget_GrSurfaceFlag;
uvDesc.fWidth = sizes[1].fWidth;
uvDesc.fHeight = sizes[1].fHeight;
uTex.reset(context->textureProvider()->createApproxTexture(uvDesc));
uvDesc.fWidth = sizes[2].fWidth;
uvDesc.fHeight = sizes[2].fHeight;
vTex.reset(context->textureProvider()->createApproxTexture(uvDesc));
if (!uTex || !vTex) {
return false;
}
}
}
// Do all the draws before any readback.
if (yuvTex) {
SkAutoTUnref<GrDrawContext> dc(context->drawContext(yuvTex->asRenderTarget()));
if (!dc) {
return false;
}
if (!convert_texture(texture, dc, sizes[0].fWidth, sizes[0].fHeight, colorSpace,
GrYUVEffect::CreateRGBToYUV)) {
return false;
}
} else {
SkASSERT(yTex);
SkAutoTUnref<GrDrawContext> dc(context->drawContext(yTex->asRenderTarget()));
if (!dc) {
return false;
}
if (!convert_texture(texture, dc, sizes[0].fWidth, sizes[0].fHeight, colorSpace,
GrYUVEffect::CreateRGBToY)) {
return false;
}
if (uvTex) {
dc.reset(context->drawContext(uvTex->asRenderTarget()));
if (!dc) {
return false;
}
if (!convert_texture(texture, dc, sizes[1].fWidth, sizes[1].fHeight,
colorSpace, GrYUVEffect::CreateRGBToUV)) {
return false;
}
} else {
SkASSERT(uTex && vTex);
dc.reset(context->drawContext(uTex->asRenderTarget()));
if (!dc) {
return false;
}
if (!convert_texture(texture, dc, sizes[1].fWidth, sizes[1].fHeight,
colorSpace, GrYUVEffect::CreateRGBToU)) {
return false;
}
dc.reset(context->drawContext(vTex->asRenderTarget()));
if (!dc) {
return false;
}
if (!convert_texture(texture, dc, sizes[2].fWidth, sizes[2].fHeight,
colorSpace, GrYUVEffect::CreateRGBToV)) {
return false;
}
}
}
if (yuvTex) {
SkASSERT(sizes[0] == sizes[1] && sizes[1] == sizes[2]);
SkISize yuvSize = sizes[0];
// We have no kRGB_888 pixel format, so readback rgba and then copy three channels.
SkAutoSTMalloc<128 * 128, uint32_t> tempYUV(yuvSize.fWidth * yuvSize.fHeight);
if (!yuvTex->readPixels(0, 0, yuvSize.fWidth, yuvSize.fHeight,
kRGBA_8888_GrPixelConfig, tempYUV.get(), 0)) {
return false;
}
size_t yRowBytes = rowBytes[0] ? rowBytes[0] : yuvSize.fWidth;
size_t uRowBytes = rowBytes[1] ? rowBytes[1] : yuvSize.fWidth;
size_t vRowBytes = rowBytes[2] ? rowBytes[2] : yuvSize.fWidth;
if (yRowBytes < (size_t)yuvSize.fWidth || uRowBytes < (size_t)yuvSize.fWidth ||
vRowBytes < (size_t)yuvSize.fWidth) {
return false;
}
for (int j = 0; j < yuvSize.fHeight; ++j) {
for (int i = 0; i < yuvSize.fWidth; ++i) {
// These writes could surely be made more efficient.
uint32_t y = GrColorUnpackR(tempYUV.get()[j * yuvSize.fWidth + i]);
uint32_t u = GrColorUnpackG(tempYUV.get()[j * yuvSize.fWidth + i]);
uint32_t v = GrColorUnpackB(tempYUV.get()[j * yuvSize.fWidth + i]);
uint8_t* yLoc = ((uint8_t*)planes[0]) + j * yRowBytes + i;
uint8_t* uLoc = ((uint8_t*)planes[1]) + j * uRowBytes + i;
uint8_t* vLoc = ((uint8_t*)planes[2]) + j * vRowBytes + i;
*yLoc = y;
*uLoc = u;
*vLoc = v;
}
}
return true;
} else {
SkASSERT(yTex);
if (!yTex->readPixels(0, 0, sizes[0].fWidth, sizes[0].fHeight,
kAlpha_8_GrPixelConfig, planes[0], rowBytes[0])) {
return false;
}
if (uvTex) {
SkASSERT(sizes[1].fWidth == sizes[2].fWidth);
SkISize uvSize = sizes[1];
// We have no kRG_88 pixel format, so readback rgba and then copy two channels.
SkAutoSTMalloc<128 * 128, uint32_t> tempUV(uvSize.fWidth * uvSize.fHeight);
if (!uvTex->readPixels(0, 0, uvSize.fWidth, uvSize.fHeight,
kRGBA_8888_GrPixelConfig, tempUV.get(), 0)) {
return false;
}
size_t uRowBytes = rowBytes[1] ? rowBytes[1] : uvSize.fWidth;
size_t vRowBytes = rowBytes[2] ? rowBytes[2] : uvSize.fWidth;
if (uRowBytes < (size_t)uvSize.fWidth || vRowBytes < (size_t)uvSize.fWidth) {
return false;
}
for (int j = 0; j < uvSize.fHeight; ++j) {
for (int i = 0; i < uvSize.fWidth; ++i) {
// These writes could surely be made more efficient.
uint32_t u = GrColorUnpackR(tempUV.get()[j * uvSize.fWidth + i]);
uint32_t v = GrColorUnpackG(tempUV.get()[j * uvSize.fWidth + i]);
uint8_t* uLoc = ((uint8_t*)planes[1]) + j * uRowBytes + i;
uint8_t* vLoc = ((uint8_t*)planes[2]) + j * vRowBytes + i;
*uLoc = u;
*vLoc = v;
}
}
return true;
} else {
SkASSERT(uTex && vTex);
if (!uTex->readPixels(0, 0, sizes[1].fWidth, sizes[1].fHeight,
kAlpha_8_GrPixelConfig, planes[1], rowBytes[1])) {
return false;
}
if (!vTex->readPixels(0, 0, sizes[2].fWidth, sizes[2].fHeight,
kAlpha_8_GrPixelConfig, planes[2], rowBytes[2])) {
return false;
}
return true;
}
}
}
return false;
}
|