1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
|
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrShape_DEFINED
#define GrShape_DEFINED
#include "GrStyle.h"
#include "SkPath.h"
#include "SkPathPriv.h"
#include "SkRRect.h"
#include "SkTemplates.h"
#include "SkTLazy.h"
/**
* Represents a geometric shape (rrect or path) and the GrStyle that it should be rendered with.
* It is possible to apply the style to the GrShape to produce a new GrShape where the geometry
* reflects the styling information (e.g. is stroked). It is also possible to apply just the
* path effect from the style. In this case the resulting shape will include any remaining
* stroking information that is to be applied after the path effect.
*
* Shapes can produce keys that represent only the geometry information, not the style. Note that
* when styling information is applied to produce a new shape then the style has been converted
* to geometric information and is included in the new shape's key. When the same style is applied
* to two shapes that reflect the same underlying geometry the computed keys of the stylized shapes
* will be the same.
*
* Currently this can only be constructed from a path, rect, or rrect though it can become a path
* applying style to the geometry. The idea is to expand this to cover most or all of the geometries
* that have fast paths in the GPU backend.
*/
class GrShape {
public:
// Keys for paths may be extracted from the path data for small paths. Clients aren't supposed
// to have to worry about this. This value is exposed for unit tests.
static constexpr int kMaxKeyFromDataVerbCnt = 10;
GrShape() { this->initType(Type::kEmpty); }
explicit GrShape(const SkPath& path) : GrShape(path, GrStyle::SimpleFill()) {}
explicit GrShape(const SkRRect& rrect) : GrShape(rrect, GrStyle::SimpleFill()) {}
explicit GrShape(const SkRect& rect) : GrShape(rect, GrStyle::SimpleFill()) {}
GrShape(const SkPath& path, const GrStyle& style) : fStyle(style) {
this->initType(Type::kPath, &path);
this->attemptToSimplifyPath();
}
GrShape(const SkRRect& rrect, const GrStyle& style)
: fStyle(style) {
this->initType(Type::kRRect);
fRRectData.fRRect = rrect;
fRRectData.fInverted = false;
fRRectData.fStart = DefaultRRectDirAndStartIndex(rrect, style.hasPathEffect(),
&fRRectData.fDir);
this->attemptToSimplifyRRect();
}
GrShape(const SkRRect& rrect, SkPath::Direction dir, unsigned start, bool inverted,
const GrStyle& style)
: fStyle(style) {
this->initType(Type::kRRect);
fRRectData.fRRect = rrect;
fRRectData.fInverted = inverted;
if (style.pathEffect()) {
fRRectData.fDir = dir;
fRRectData.fStart = start;
if (fRRectData.fRRect.getType() == SkRRect::kRect_Type) {
fRRectData.fStart = (fRRectData.fStart + 1) & 0b110;
} else if (fRRectData.fRRect.getType() == SkRRect::kOval_Type) {
fRRectData.fStart &= 0b110;
}
} else {
fRRectData.fStart = DefaultRRectDirAndStartIndex(rrect, false, &fRRectData.fDir);
}
this->attemptToSimplifyRRect();
}
GrShape(const SkRect& rect, const GrStyle& style)
: fStyle(style) {
this->initType(Type::kRRect);
fRRectData.fRRect = SkRRect::MakeRect(rect);
fRRectData.fInverted = false;
fRRectData.fStart = DefaultRectDirAndStartIndex(rect, style.hasPathEffect(),
&fRRectData.fDir);
this->attemptToSimplifyRRect();
}
GrShape(const SkPath& path, const SkPaint& paint) : fStyle(paint) {
this->initType(Type::kPath, &path);
this->attemptToSimplifyPath();
}
GrShape(const SkRRect& rrect, const SkPaint& paint)
: fStyle(paint) {
this->initType(Type::kRRect);
fRRectData.fRRect = rrect;
fRRectData.fInverted = false;
fRRectData.fStart = DefaultRRectDirAndStartIndex(rrect, fStyle.hasPathEffect(),
&fRRectData.fDir);
this->attemptToSimplifyRRect();
}
GrShape(const SkRect& rect, const SkPaint& paint)
: fStyle(paint) {
this->initType(Type::kRRect);
fRRectData.fRRect = SkRRect::MakeRect(rect);
fRRectData.fInverted = false;
fRRectData.fStart = DefaultRectDirAndStartIndex(rect, fStyle.hasPathEffect(),
&fRRectData.fDir);
this->attemptToSimplifyRRect();
}
GrShape(const GrShape&);
GrShape& operator=(const GrShape& that);
~GrShape() { this->changeType(Type::kEmpty); }
/**
* Informs MakeFilled on how to modify that shape's fill rule when making a simple filled
* version of the shape.
*/
enum class FillInversion {
kPreserve,
kFlip,
kForceNoninverted,
kForceInverted
};
/**
* Makes a filled shape from the pre-styled original shape and optionally modifies whether
* the fill is inverted or not. It's important to note that the original shape's geometry
* may already have been modified if doing so was neutral with respect to its style
* (e.g. filled paths are always closed when stored in a shape and dashed paths are always
* made non-inverted since dashing ignores inverseness).
*/
static GrShape MakeFilled(const GrShape& original, FillInversion = FillInversion::kPreserve);
const GrStyle& style() const { return fStyle; }
/**
* Returns a shape that has either applied the path effect or path effect and stroking
* information from this shape's style to its geometry. Scale is used when approximating the
* output geometry and typically is computed from the view matrix
*/
GrShape applyStyle(GrStyle::Apply apply, SkScalar scale) const {
return GrShape(*this, apply, scale);
}
/** Returns the unstyled geometry as a rrect if possible. */
bool asRRect(SkRRect* rrect, SkPath::Direction* dir, unsigned* start, bool* inverted) const {
if (Type::kRRect != fType) {
return false;
}
if (rrect) {
*rrect = fRRectData.fRRect;
}
if (dir) {
*dir = fRRectData.fDir;
}
if (start) {
*start = fRRectData.fStart;
}
if (inverted) {
*inverted = fRRectData.fInverted;
}
return true;
}
/**
* If the unstyled shape is a straight line segment, returns true and sets pts to the endpoints.
* An inverse filled line path is still considered a line.
*/
bool asLine(SkPoint pts[2], bool* inverted) const {
if (fType != Type::kLine) {
return false;
}
if (pts) {
pts[0] = fLineData.fPts[0];
pts[1] = fLineData.fPts[1];
}
if (inverted) {
*inverted = fLineData.fInverted;
}
return true;
}
/** Returns the unstyled geometry as a path. */
void asPath(SkPath* out) const {
switch (fType) {
case Type::kEmpty:
out->reset();
break;
case Type::kInvertedEmpty:
out->reset();
out->setFillType(kDefaultPathInverseFillType);
break;
case Type::kRRect:
out->reset();
out->addRRect(fRRectData.fRRect, fRRectData.fDir, fRRectData.fStart);
// Below matches the fill type that attemptToSimplifyPath uses.
if (fRRectData.fInverted) {
out->setFillType(kDefaultPathInverseFillType);
} else {
out->setFillType(kDefaultPathFillType);
}
break;
case Type::kLine:
out->reset();
out->moveTo(fLineData.fPts[0]);
out->lineTo(fLineData.fPts[1]);
if (fLineData.fInverted) {
out->setFillType(kDefaultPathInverseFillType);
} else {
out->setFillType(kDefaultPathFillType);
}
break;
case Type::kPath:
*out = this->path();
break;
}
}
/**
* Returns whether the geometry is empty. Note that applying the style could produce a
* non-empty shape. It also may have an inverse fill.
*/
bool isEmpty() const { return Type::kEmpty == fType || Type::kInvertedEmpty == fType; }
/**
* Gets the bounds of the geometry without reflecting the shape's styling. This ignores
* the inverse fill nature of the geometry.
*/
SkRect bounds() const;
/**
* Gets the bounds of the geometry reflecting the shape's styling (ignoring inverse fill
* status).
*/
SkRect styledBounds() const;
/**
* Is this shape known to be convex, before styling is applied. An unclosed but otherwise
* convex path is considered to be closed if they styling reflects a fill and not otherwise.
* This is because filling closes all contours in the path.
*/
bool knownToBeConvex() const {
switch (fType) {
case Type::kEmpty:
return true;
case Type::kInvertedEmpty:
return true;
case Type::kRRect:
return true;
case Type::kLine:
return true;
case Type::kPath:
// SkPath.isConvex() really means "is this path convex were it to be closed" and
// thus doesn't give the correct answer for stroked paths, hence we also check
// whether the path is either filled or closed. Convex paths may only have one
// contour hence isLastContourClosed() is a sufficient for a convex path.
return (this->style().isSimpleFill() || this->path().isLastContourClosed()) &&
this->path().isConvex();
}
return false;
}
/** Is the pre-styled geometry inverse filled? */
bool inverseFilled() const {
bool ret = false;
switch (fType) {
case Type::kEmpty:
ret = false;
break;
case Type::kInvertedEmpty:
ret = true;
break;
case Type::kRRect:
ret = fRRectData.fInverted;
break;
case Type::kLine:
ret = fLineData.fInverted;
break;
case Type::kPath:
ret = this->path().isInverseFillType();
break;
}
// Dashing ignores inverseness. We should have caught this earlier. skbug.com/5421
SkASSERT(!(ret && this->style().isDashed()));
return ret;
}
/**
* Might applying the styling to the geometry produce an inverse fill. The "may" part comes in
* because an arbitrary path effect could produce an inverse filled path. In other cases this
* can be thought of as "inverseFilledAfterStyling()".
*/
bool mayBeInverseFilledAfterStyling() const {
// An arbitrary path effect can produce an arbitrary output path, which may be inverse
// filled.
if (this->style().hasNonDashPathEffect()) {
return true;
}
return this->inverseFilled();
}
/**
* Is it known that the unstyled geometry has no unclosed contours. This means that it will
* not have any caps if stroked (modulo the effect of any path effect).
*/
bool knownToBeClosed() const {
switch (fType) {
case Type::kEmpty:
return true;
case Type::kInvertedEmpty:
return true;
case Type::kRRect:
return true;
case Type::kLine:
return false;
case Type::kPath:
// SkPath doesn't keep track of the closed status of each contour.
return SkPathPriv::IsClosedSingleContour(this->path());
}
return false;
}
uint32_t segmentMask() const {
switch (fType) {
case Type::kEmpty:
return 0;
case Type::kInvertedEmpty:
return 0;
case Type::kRRect:
if (fRRectData.fRRect.getType() == SkRRect::kOval_Type) {
return SkPath::kConic_SegmentMask;
} else if (fRRectData.fRRect.getType() == SkRRect::kRect_Type ||
fRRectData.fRRect.getType() == SkRRect::kEmpty_Type) {
return SkPath::kLine_SegmentMask;
}
return SkPath::kLine_SegmentMask | SkPath::kConic_SegmentMask;
case Type::kLine:
return SkPath::kLine_SegmentMask;
case Type::kPath:
return this->path().getSegmentMasks();
}
return 0;
}
/**
* Gets the size of the key for the shape represented by this GrShape (ignoring its styling).
* A negative value is returned if the shape has no key (shouldn't be cached).
*/
int unstyledKeySize() const;
bool hasUnstyledKey() const { return this->unstyledKeySize() >= 0; }
/**
* Writes unstyledKeySize() bytes into the provided pointer. Assumes that there is enough
* space allocated for the key and that unstyledKeySize() does not return a negative value
* for this shape.
*/
void writeUnstyledKey(uint32_t* key) const;
/**
* Adds a listener to the *original* path. Typically used to invalidate cached resources when
* a path is no longer in-use. If the shape started out as something other than a path, this
* does nothing (but will delete the listener).
*/
void addGenIDChangeListener(SkPathRef::GenIDChangeListener* listener) const;
/**
* Helpers that are only exposed for unit tests, to determine if the shape is a path, and get
* the generation ID of the *original* path. This is the path that will receive
* GenIDChangeListeners added to this shape.
*/
uint32_t testingOnly_getOriginalGenerationID() const;
bool testingOnly_isPath() const;
bool testingOnly_isNonVolatilePath() const;
private:
enum class Type {
kEmpty,
kInvertedEmpty,
kRRect,
kLine,
kPath,
};
void initType(Type type, const SkPath* path = nullptr) {
fType = Type::kEmpty;
this->changeType(type, path);
}
void changeType(Type type, const SkPath* path = nullptr) {
bool wasPath = Type::kPath == fType;
fType = type;
bool isPath = Type::kPath == type;
SkASSERT(!path || isPath);
if (wasPath && !isPath) {
fPathData.fPath.~SkPath();
} else if (!wasPath && isPath) {
if (path) {
new (&fPathData.fPath) SkPath(*path);
} else {
new (&fPathData.fPath) SkPath();
}
} else if (isPath && path) {
fPathData.fPath = *path;
}
// Whether or not we use the path's gen ID is decided in attemptToSimplifyPath.
fPathData.fGenID = 0;
}
SkPath& path() {
SkASSERT(Type::kPath == fType);
return fPathData.fPath;
}
const SkPath& path() const {
SkASSERT(Type::kPath == fType);
return fPathData.fPath;
}
/** Constructor used by the applyStyle() function */
GrShape(const GrShape& parentShape, GrStyle::Apply, SkScalar scale);
/**
* Determines the key we should inherit from the input shape's geometry and style when
* we are applying the style to create a new shape.
*/
void setInheritedKey(const GrShape& parentShape, GrStyle::Apply, SkScalar scale);
void attemptToSimplifyPath();
void attemptToSimplifyRRect();
void attemptToSimplifyLine();
bool attemptToSimplifyStrokedLineToRRect();
/** Gets the path that gen id listeners should be added to. */
const SkPath* originalPathForListeners() const;
// Defaults to use when there is no distinction between even/odd and winding fills.
static constexpr SkPath::FillType kDefaultPathFillType = SkPath::kEvenOdd_FillType;
static constexpr SkPath::FillType kDefaultPathInverseFillType =
SkPath::kInverseEvenOdd_FillType;
static constexpr SkPath::Direction kDefaultRRectDir = SkPath::kCW_Direction;
static constexpr unsigned kDefaultRRectStart = 0;
static unsigned DefaultRectDirAndStartIndex(const SkRect& rect, bool hasPathEffect,
SkPath::Direction* dir) {
*dir = kDefaultRRectDir;
// This comes from SkPath's interface. The default for adding a SkRect is counter clockwise
// beginning at index 0 (which happens to correspond to rrect index 0 or 7).
if (!hasPathEffect) {
// It doesn't matter what start we use, just be consistent to avoid redundant keys.
return kDefaultRRectStart;
}
// In SkPath a rect starts at index 0 by default. This is the top left corner. However,
// we store rects as rrects. RRects don't preserve the invertedness, but rather sort the
// rect edges. Thus, we may need to modify the rrect's start index to account for the sort.
bool swapX = rect.fLeft > rect.fRight;
bool swapY = rect.fTop > rect.fBottom;
if (swapX && swapY) {
// 0 becomes start index 2 and times 2 to convert from rect the rrect indices.
return 2 * 2;
} else if (swapX) {
*dir = SkPath::kCCW_Direction;
// 0 becomes start index 1 and times 2 to convert from rect the rrect indices.
return 2 * 1;
} else if (swapY) {
*dir = SkPath::kCCW_Direction;
// 0 becomes start index 3 and times 2 to convert from rect the rrect indices.
return 2 * 3;
}
return 0;
}
static unsigned DefaultRRectDirAndStartIndex(const SkRRect& rrect, bool hasPathEffect,
SkPath::Direction* dir) {
// This comes from SkPath's interface. The default for adding a SkRRect to a path is
// clockwise beginning at starting index 6.
static constexpr unsigned kPathRRectStartIdx = 6;
*dir = kDefaultRRectDir;
if (!hasPathEffect) {
// It doesn't matter what start we use, just be consistent to avoid redundant keys.
return kDefaultRRectStart;
}
return kPathRRectStartIdx;
}
Type fType;
union {
struct {
SkRRect fRRect;
SkPath::Direction fDir;
unsigned fStart;
bool fInverted;
} fRRectData;
struct {
SkPath fPath;
// Gen ID of the original path (fPath may be modified)
int32_t fGenID;
} fPathData;
struct {
SkPoint fPts[2];
bool fInverted;
} fLineData;
};
GrStyle fStyle;
SkTLazy<SkPath> fInheritedPathForListeners;
SkAutoSTArray<8, uint32_t> fInheritedKey;
};
#endif
|