1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
|
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrShape.h"
GrShape& GrShape::operator=(const GrShape& that) {
fStyle = that.fStyle;
this->changeType(that.fType, Type::kPath == that.fType ? &that.path() : nullptr);
switch (fType) {
case Type::kEmpty:
break;
case Type::kInvertedEmpty:
break;
case Type::kRRect:
fRRectData = that.fRRectData;
break;
case Type::kLine:
fLineData = that.fLineData;
break;
case Type::kPath:
fPathData.fGenID = that.fPathData.fGenID;
break;
}
fInheritedKey.reset(that.fInheritedKey.count());
sk_careful_memcpy(fInheritedKey.get(), that.fInheritedKey.get(),
sizeof(uint32_t) * fInheritedKey.count());
return *this;
}
static bool flip_inversion(bool originalIsInverted, GrShape::FillInversion inversion) {
switch (inversion) {
case GrShape::FillInversion::kPreserve:
return false;
case GrShape::FillInversion::kFlip:
return true;
case GrShape::FillInversion::kForceInverted:
return !originalIsInverted;
case GrShape::FillInversion::kForceNoninverted:
return originalIsInverted;
}
return false;
}
static bool is_inverted(bool originalIsInverted, GrShape::FillInversion inversion) {
switch (inversion) {
case GrShape::FillInversion::kPreserve:
return originalIsInverted;
case GrShape::FillInversion::kFlip:
return !originalIsInverted;
case GrShape::FillInversion::kForceInverted:
return true;
case GrShape::FillInversion::kForceNoninverted:
return false;
}
return false;
}
GrShape GrShape::MakeFilled(const GrShape& original, FillInversion inversion) {
if (original.style().isSimpleFill() && !flip_inversion(original.inverseFilled(), inversion)) {
// By returning the original rather than falling through we can preserve any inherited style
// key. Otherwise, we wipe it out below since the style change invalidates it.
return original;
}
GrShape result;
switch (original.fType) {
case Type::kRRect:
result.fType = original.fType;
result.fRRectData.fRRect = original.fRRectData.fRRect;
result.fRRectData.fDir = kDefaultRRectDir;
result.fRRectData.fStart = kDefaultRRectStart;
result.fRRectData.fInverted = is_inverted(original.fRRectData.fInverted, inversion);
break;
case Type::kLine:
// Lines don't fill.
if (is_inverted(original.fLineData.fInverted, inversion)) {
result.fType = Type::kInvertedEmpty;
} else {
result.fType = Type::kEmpty;
}
break;
case Type::kEmpty:
result.fType = is_inverted(false, inversion) ? Type::kInvertedEmpty : Type::kEmpty;
break;
case Type::kInvertedEmpty:
result.fType = is_inverted(true, inversion) ? Type::kInvertedEmpty : Type::kEmpty;
break;
case Type::kPath:
result.initType(Type::kPath, &original.fPathData.fPath);
result.fPathData.fGenID = original.fPathData.fGenID;
if (flip_inversion(original.fPathData.fPath.isInverseFillType(), inversion)) {
result.fPathData.fPath.toggleInverseFillType();
}
if (!original.style().isSimpleFill()) {
// Going from a non-filled style to fill may allow additional simplifications (e.g.
// closing an open rect that wasn't closed in the original shape because it had
// stroke style).
result.attemptToSimplifyPath();
}
break;
}
// We don't copy the inherited key since it can contain path effect information that we just
// stripped.
return result;
}
SkRect GrShape::bounds() const {
// Bounds where left == bottom or top == right can indicate a line or point shape. We return
// inverted bounds for a truly empty shape.
static constexpr SkRect kInverted = SkRect::MakeLTRB(1, 1, -1, -1);
switch (fType) {
case Type::kEmpty:
return kInverted;
case Type::kInvertedEmpty:
return kInverted;
case Type::kLine: {
SkRect bounds;
if (fLineData.fPts[0].fX < fLineData.fPts[1].fX) {
bounds.fLeft = fLineData.fPts[0].fX;
bounds.fRight = fLineData.fPts[1].fX;
} else {
bounds.fLeft = fLineData.fPts[1].fX;
bounds.fRight = fLineData.fPts[0].fX;
}
if (fLineData.fPts[0].fY < fLineData.fPts[1].fY) {
bounds.fTop = fLineData.fPts[0].fY;
bounds.fBottom = fLineData.fPts[1].fY;
} else {
bounds.fTop = fLineData.fPts[1].fY;
bounds.fBottom = fLineData.fPts[0].fY;
}
return bounds;
}
case Type::kRRect:
return fRRectData.fRRect.getBounds();
case Type::kPath:
return this->path().getBounds();
}
SK_ABORT("Unknown shape type");
return kInverted;
}
SkRect GrShape::styledBounds() const {
if (this->isEmpty() && !fStyle.hasNonDashPathEffect()) {
return SkRect::MakeEmpty();
}
SkRect bounds;
fStyle.adjustBounds(&bounds, this->bounds());
return bounds;
}
// If the path is small enough to be keyed from its data this returns key length, otherwise -1.
static int path_key_from_data_size(const SkPath& path) {
const int verbCnt = path.countVerbs();
if (verbCnt > GrShape::kMaxKeyFromDataVerbCnt) {
return -1;
}
const int pointCnt = path.countPoints();
const int conicWeightCnt = SkPathPriv::ConicWeightCnt(path);
GR_STATIC_ASSERT(sizeof(SkPoint) == 2 * sizeof(uint32_t));
GR_STATIC_ASSERT(sizeof(SkScalar) == sizeof(uint32_t));
// 2 is for the verb cnt and a fill type. Each verb is a byte but we'll pad the verb data out to
// a uint32_t length.
return 2 + (SkAlign4(verbCnt) >> 2) + 2 * pointCnt + conicWeightCnt;
}
// Writes the path data key into the passed pointer.
static void write_path_key_from_data(const SkPath& path, uint32_t* origKey) {
uint32_t* key = origKey;
// The check below should take care of negative values casted positive.
const int verbCnt = path.countVerbs();
const int pointCnt = path.countPoints();
const int conicWeightCnt = SkPathPriv::ConicWeightCnt(path);
SkASSERT(verbCnt <= GrShape::kMaxKeyFromDataVerbCnt);
SkASSERT(pointCnt && verbCnt);
*key++ = path.getFillType();
*key++ = verbCnt;
memcpy(key, SkPathPriv::VerbData(path), verbCnt * sizeof(uint8_t));
int verbKeySize = SkAlign4(verbCnt);
// pad out to uint32_t alignment using value that will stand out when debugging.
uint8_t* pad = reinterpret_cast<uint8_t*>(key)+ verbCnt;
memset(pad, 0xDE, verbKeySize - verbCnt);
key += verbKeySize >> 2;
memcpy(key, SkPathPriv::PointData(path), sizeof(SkPoint) * pointCnt);
GR_STATIC_ASSERT(sizeof(SkPoint) == 2 * sizeof(uint32_t));
key += 2 * pointCnt;
sk_careful_memcpy(key, SkPathPriv::ConicWeightData(path), sizeof(SkScalar) * conicWeightCnt);
GR_STATIC_ASSERT(sizeof(SkScalar) == sizeof(uint32_t));
SkDEBUGCODE(key += conicWeightCnt);
SkASSERT(key - origKey == path_key_from_data_size(path));
}
int GrShape::unstyledKeySize() const {
if (fInheritedKey.count()) {
return fInheritedKey.count();
}
switch (fType) {
case Type::kEmpty:
return 1;
case Type::kInvertedEmpty:
return 1;
case Type::kRRect:
SkASSERT(!fInheritedKey.count());
SkASSERT(0 == SkRRect::kSizeInMemory % sizeof(uint32_t));
// + 1 for the direction, start index, and inverseness.
return SkRRect::kSizeInMemory / sizeof(uint32_t) + 1;
case Type::kLine:
GR_STATIC_ASSERT(2 * sizeof(uint32_t) == sizeof(SkPoint));
// 4 for the end points and 1 for the inverseness
return 5;
case Type::kPath: {
if (0 == fPathData.fGenID) {
return -1;
}
int dataKeySize = path_key_from_data_size(fPathData.fPath);
if (dataKeySize >= 0) {
return dataKeySize;
}
// The key is the path ID and fill type.
return 2;
}
}
SK_ABORT("Should never get here.");
return 0;
}
void GrShape::writeUnstyledKey(uint32_t* key) const {
SkASSERT(this->unstyledKeySize());
SkDEBUGCODE(uint32_t* origKey = key;)
if (fInheritedKey.count()) {
memcpy(key, fInheritedKey.get(), sizeof(uint32_t) * fInheritedKey.count());
SkDEBUGCODE(key += fInheritedKey.count();)
} else {
switch (fType) {
case Type::kEmpty:
*key++ = 1;
break;
case Type::kInvertedEmpty:
*key++ = 2;
break;
case Type::kRRect:
fRRectData.fRRect.writeToMemory(key);
key += SkRRect::kSizeInMemory / sizeof(uint32_t);
*key = (fRRectData.fDir == SkPath::kCCW_Direction) ? (1 << 31) : 0;
*key |= fRRectData.fInverted ? (1 << 30) : 0;
*key++ |= fRRectData.fStart;
SkASSERT(fRRectData.fStart < 8);
break;
case Type::kLine:
memcpy(key, fLineData.fPts, 2 * sizeof(SkPoint));
key += 4;
*key++ = fLineData.fInverted ? 1 : 0;
break;
case Type::kPath: {
SkASSERT(fPathData.fGenID);
int dataKeySize = path_key_from_data_size(fPathData.fPath);
if (dataKeySize >= 0) {
write_path_key_from_data(fPathData.fPath, key);
return;
}
*key++ = fPathData.fGenID;
// We could canonicalize the fill rule for paths that don't differentiate between
// even/odd or winding fill (e.g. convex).
*key++ = this->path().getFillType();
break;
}
}
}
SkASSERT(key - origKey == this->unstyledKeySize());
}
void GrShape::setInheritedKey(const GrShape &parent, GrStyle::Apply apply, SkScalar scale) {
SkASSERT(!fInheritedKey.count());
// If the output shape turns out to be simple, then we will just use its geometric key
if (Type::kPath == fType) {
// We want ApplyFullStyle(ApplyPathEffect(shape)) to have the same key as
// ApplyFullStyle(shape).
// The full key is structured as (geo,path_effect,stroke).
// If we do ApplyPathEffect we get geo,path_effect as the inherited key. If we then
// do ApplyFullStyle we'll memcpy geo,path_effect into the new inherited key
// and then append the style key (which should now be stroke only) at the end.
int parentCnt = parent.fInheritedKey.count();
bool useParentGeoKey = !parentCnt;
if (useParentGeoKey) {
parentCnt = parent.unstyledKeySize();
if (parentCnt < 0) {
// The parent's geometry has no key so we will have no key.
fPathData.fGenID = 0;
return;
}
}
uint32_t styleKeyFlags = 0;
if (parent.knownToBeClosed()) {
styleKeyFlags |= GrStyle::kClosed_KeyFlag;
}
if (parent.asLine(nullptr, nullptr)) {
styleKeyFlags |= GrStyle::kNoJoins_KeyFlag;
}
int styleCnt = GrStyle::KeySize(parent.fStyle, apply, styleKeyFlags);
if (styleCnt < 0) {
// The style doesn't allow a key, set the path gen ID to 0 so that we fail when
// we try to get a key for the shape.
fPathData.fGenID = 0;
return;
}
fInheritedKey.reset(parentCnt + styleCnt);
if (useParentGeoKey) {
// This will be the geo key.
parent.writeUnstyledKey(fInheritedKey.get());
} else {
// This should be (geo,path_effect).
memcpy(fInheritedKey.get(), parent.fInheritedKey.get(),
parentCnt * sizeof(uint32_t));
}
// Now turn (geo,path_effect) or (geo) into (geo,path_effect,stroke)
GrStyle::WriteKey(fInheritedKey.get() + parentCnt, parent.fStyle, apply, scale,
styleKeyFlags);
}
}
GrShape::GrShape(const GrShape& that) : fStyle(that.fStyle) {
const SkPath* thatPath = Type::kPath == that.fType ? &that.fPathData.fPath : nullptr;
this->initType(that.fType, thatPath);
switch (fType) {
case Type::kEmpty:
break;
case Type::kInvertedEmpty:
break;
case Type::kRRect:
fRRectData = that.fRRectData;
break;
case Type::kLine:
fLineData = that.fLineData;
break;
case Type::kPath:
fPathData.fGenID = that.fPathData.fGenID;
break;
}
fInheritedKey.reset(that.fInheritedKey.count());
sk_careful_memcpy(fInheritedKey.get(), that.fInheritedKey.get(),
sizeof(uint32_t) * fInheritedKey.count());
}
GrShape::GrShape(const GrShape& parent, GrStyle::Apply apply, SkScalar scale) {
// TODO: Add some quantization of scale for better cache performance here or leave that up
// to caller?
// TODO: For certain shapes and stroke params we could ignore the scale. (e.g. miter or bevel
// stroke of a rect).
if (!parent.style().applies() ||
(GrStyle::Apply::kPathEffectOnly == apply && !parent.style().pathEffect())) {
this->initType(Type::kEmpty);
*this = parent;
return;
}
SkPathEffect* pe = parent.fStyle.pathEffect();
SkTLazy<SkPath> tmpPath;
const GrShape* parentForKey = &parent;
SkTLazy<GrShape> tmpParent;
this->initType(Type::kPath);
fPathData.fGenID = 0;
if (pe) {
const SkPath* srcForPathEffect;
if (parent.fType == Type::kPath) {
srcForPathEffect = &parent.path();
} else {
srcForPathEffect = tmpPath.init();
parent.asPath(tmpPath.get());
}
// Should we consider bounds? Would have to include in key, but it'd be nice to know
// if the bounds actually modified anything before including in key.
SkStrokeRec strokeRec = parent.fStyle.strokeRec();
if (!parent.fStyle.applyPathEffectToPath(&this->path(), &strokeRec, *srcForPathEffect,
scale)) {
tmpParent.init(*srcForPathEffect, GrStyle(strokeRec, nullptr));
*this = tmpParent.get()->applyStyle(apply, scale);
return;
}
// A path effect has access to change the res scale but we aren't expecting it to and it
// would mess up our key computation.
SkASSERT(scale == strokeRec.getResScale());
if (GrStyle::Apply::kPathEffectAndStrokeRec == apply && strokeRec.needToApply()) {
// The intermediate shape may not be a general path. If we we're just applying
// the path effect then attemptToReduceFromPath would catch it. This means that
// when we subsequently applied the remaining strokeRec we would have a non-path
// parent shape that would be used to determine the the stroked path's key.
// We detect that case here and change parentForKey to a temporary that represents
// the simpler shape so that applying both path effect and the strokerec all at
// once produces the same key.
tmpParent.init(this->path(), GrStyle(strokeRec, nullptr));
tmpParent.get()->setInheritedKey(parent, GrStyle::Apply::kPathEffectOnly, scale);
if (!tmpPath.isValid()) {
tmpPath.init();
}
tmpParent.get()->asPath(tmpPath.get());
SkStrokeRec::InitStyle fillOrHairline;
// The parent shape may have simplified away the strokeRec, check for that here.
if (tmpParent.get()->style().applies()) {
SkAssertResult(tmpParent.get()->style().applyToPath(&this->path(), &fillOrHairline,
*tmpPath.get(), scale));
} else if (tmpParent.get()->style().isSimpleFill()) {
fillOrHairline = SkStrokeRec::kFill_InitStyle;
} else {
SkASSERT(tmpParent.get()->style().isSimpleHairline());
fillOrHairline = SkStrokeRec::kHairline_InitStyle;
}
fStyle.resetToInitStyle(fillOrHairline);
parentForKey = tmpParent.get();
} else {
fStyle = GrStyle(strokeRec, nullptr);
}
} else {
const SkPath* srcForParentStyle;
if (parent.fType == Type::kPath) {
srcForParentStyle = &parent.path();
} else {
srcForParentStyle = tmpPath.init();
parent.asPath(tmpPath.get());
}
SkStrokeRec::InitStyle fillOrHairline;
SkASSERT(parent.fStyle.applies());
SkASSERT(!parent.fStyle.pathEffect());
SkAssertResult(parent.fStyle.applyToPath(&this->path(), &fillOrHairline, *srcForParentStyle,
scale));
fStyle.resetToInitStyle(fillOrHairline);
}
this->attemptToSimplifyPath();
this->setInheritedKey(*parentForKey, apply, scale);
}
void GrShape::attemptToSimplifyPath() {
SkRect rect;
SkRRect rrect;
SkPath::Direction rrectDir;
unsigned rrectStart;
bool inverted = this->path().isInverseFillType();
SkPoint pts[2];
if (this->path().isEmpty()) {
// Dashing ignores inverseness skbug.com/5421.
this->changeType(inverted && !this->style().isDashed() ? Type::kInvertedEmpty
: Type::kEmpty);
} else if (this->path().isLine(pts)) {
this->changeType(Type::kLine);
fLineData.fPts[0] = pts[0];
fLineData.fPts[1] = pts[1];
fLineData.fInverted = inverted;
} else if (this->path().isRRect(&rrect, &rrectDir, &rrectStart)) {
this->changeType(Type::kRRect);
fRRectData.fRRect = rrect;
fRRectData.fDir = rrectDir;
fRRectData.fStart = rrectStart;
fRRectData.fInverted = inverted;
SkASSERT(!fRRectData.fRRect.isEmpty());
} else if (this->path().isOval(&rect, &rrectDir, &rrectStart)) {
this->changeType(Type::kRRect);
fRRectData.fRRect.setOval(rect);
fRRectData.fDir = rrectDir;
fRRectData.fInverted = inverted;
// convert from oval indexing to rrect indexiing.
fRRectData.fStart = 2 * rrectStart;
} else if (SkPathPriv::IsSimpleClosedRect(this->path(), &rect, &rrectDir, &rrectStart)) {
this->changeType(Type::kRRect);
// When there is a path effect we restrict rect detection to the narrower API that
// gives us the starting position. Otherwise, we will retry with the more aggressive
// isRect().
fRRectData.fRRect.setRect(rect);
fRRectData.fInverted = inverted;
fRRectData.fDir = rrectDir;
// convert from rect indexing to rrect indexiing.
fRRectData.fStart = 2 * rrectStart;
} else if (!this->style().hasPathEffect()) {
bool closed;
if (this->path().isRect(&rect, &closed, nullptr)) {
if (closed || this->style().isSimpleFill()) {
this->changeType(Type::kRRect);
fRRectData.fRRect.setRect(rect);
// Since there is no path effect the dir and start index is immaterial.
fRRectData.fDir = kDefaultRRectDir;
fRRectData.fStart = kDefaultRRectStart;
// There isn't dashing so we will have to preserver inverseness.
fRRectData.fInverted = inverted;
}
}
}
if (Type::kPath != fType) {
fInheritedKey.reset(0);
if (Type::kRRect == fType) {
this->attemptToSimplifyRRect();
} else if (Type::kLine == fType) {
this->attemptToSimplifyLine();
}
} else {
if (fInheritedKey.count() || this->path().isVolatile()) {
fPathData.fGenID = 0;
} else {
fPathData.fGenID = this->path().getGenerationID();
}
if (!this->style().hasNonDashPathEffect()) {
if (this->style().strokeRec().getStyle() == SkStrokeRec::kStroke_Style ||
this->style().strokeRec().getStyle() == SkStrokeRec::kHairline_Style) {
// Stroke styles don't differentiate between winding and even/odd.
// Moreover, dashing ignores inverseness (skbug.com/5421)
bool inverse = !this->style().isDashed() && this->path().isInverseFillType();
if (inverse) {
this->path().setFillType(kDefaultPathInverseFillType);
} else {
this->path().setFillType(kDefaultPathFillType);
}
} else if (this->path().isConvex()) {
// There is no distinction between even/odd and non-zero winding count for convex
// paths.
if (this->path().isInverseFillType()) {
this->path().setFillType(kDefaultPathInverseFillType);
} else {
this->path().setFillType(kDefaultPathFillType);
}
}
}
}
}
void GrShape::attemptToSimplifyRRect() {
SkASSERT(Type::kRRect == fType);
SkASSERT(!fInheritedKey.count());
if (fRRectData.fRRect.isEmpty()) {
// Dashing ignores the inverseness currently. skbug.com/5421
fType = fRRectData.fInverted && !fStyle.isDashed() ? Type::kInvertedEmpty : Type::kEmpty;
return;
}
if (!this->style().hasPathEffect()) {
fRRectData.fDir = kDefaultRRectDir;
fRRectData.fStart = kDefaultRRectStart;
} else if (fStyle.isDashed()) {
// Dashing ignores the inverseness (currently). skbug.com/5421
fRRectData.fInverted = false;
}
// Turn a stroke-and-filled miter rect into a filled rect. TODO: more rrect stroke shortcuts.
if (!fStyle.hasPathEffect() &&
fStyle.strokeRec().getStyle() == SkStrokeRec::kStrokeAndFill_Style &&
fStyle.strokeRec().getJoin() == SkPaint::kMiter_Join &&
fStyle.strokeRec().getMiter() >= SK_ScalarSqrt2 &&
fRRectData.fRRect.isRect()) {
SkScalar r = fStyle.strokeRec().getWidth() / 2;
fRRectData.fRRect = SkRRect::MakeRect(fRRectData.fRRect.rect().makeOutset(r, r));
fStyle = GrStyle::SimpleFill();
}
}
void GrShape::attemptToSimplifyLine() {
SkASSERT(Type::kLine == fType);
SkASSERT(!fInheritedKey.count());
if (fStyle.isDashed()) {
// Dashing ignores inverseness.
fLineData.fInverted = false;
return;
} else if (fStyle.hasPathEffect()) {
return;
}
if (fStyle.strokeRec().getStyle() == SkStrokeRec::kStrokeAndFill_Style) {
// Make stroke + fill be stroke since the fill is empty.
SkStrokeRec rec = fStyle.strokeRec();
rec.setStrokeStyle(fStyle.strokeRec().getWidth(), false);
fStyle = GrStyle(rec, nullptr);
}
if (fStyle.isSimpleFill()) {
this->changeType(fLineData.fInverted ? Type::kInvertedEmpty : Type::kEmpty);
return;
}
SkPoint* pts = fLineData.fPts;
if (fStyle.strokeRec().getStyle() == SkStrokeRec::kStroke_Style) {
// If it is horizontal or vertical we will turn it into a filled rrect.
SkRect rect;
rect.fLeft = SkTMin(pts[0].fX, pts[1].fX);
rect.fRight = SkTMax(pts[0].fX, pts[1].fX);
rect.fTop = SkTMin(pts[0].fY, pts[1].fY);
rect.fBottom = SkTMax(pts[0].fY, pts[1].fY);
bool eqX = rect.fLeft == rect.fRight;
bool eqY = rect.fTop == rect.fBottom;
if (eqX || eqY) {
SkScalar r = fStyle.strokeRec().getWidth() / 2;
bool inverted = fLineData.fInverted;
this->changeType(Type::kRRect);
switch (fStyle.strokeRec().getCap()) {
case SkPaint::kButt_Cap:
if (eqX && eqY) {
this->changeType(Type::kEmpty);
return;
}
if (eqX) {
rect.outset(r, 0);
} else {
rect.outset(0, r);
}
fRRectData.fRRect = SkRRect::MakeRect(rect);
break;
case SkPaint::kSquare_Cap:
rect.outset(r, r);
fRRectData.fRRect = SkRRect::MakeRect(rect);
break;
case SkPaint::kRound_Cap:
rect.outset(r, r);
fRRectData.fRRect = SkRRect::MakeRectXY(rect, r, r);
break;
}
fRRectData.fInverted = inverted;
fRRectData.fDir = kDefaultRRectDir;
fRRectData.fStart = kDefaultRRectStart;
if (fRRectData.fRRect.isEmpty()) {
// This can happen when r is very small relative to the rect edges.
this->changeType(inverted ? Type::kInvertedEmpty : Type::kEmpty);
return;
}
fStyle = GrStyle::SimpleFill();
return;
}
}
// Only path effects could care about the order of the points. Otherwise canonicalize
// the point order.
if (pts[1].fY < pts[0].fY || (pts[1].fY == pts[0].fY && pts[1].fX < pts[0].fX)) {
SkTSwap(pts[0], pts[1]);
}
}
|