1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrSWMaskHelper.h"
#include "GrPipelineBuilder.h"
#include "GrDrawTargetCaps.h"
#include "GrGpu.h"
#include "SkData.h"
#include "SkDistanceFieldGen.h"
#include "SkStrokeRec.h"
// TODO: try to remove this #include
#include "GrContext.h"
namespace {
/*
* Convert a boolean operation into a transfer mode code
*/
SkXfermode::Mode op_to_mode(SkRegion::Op op) {
static const SkXfermode::Mode modeMap[] = {
SkXfermode::kDstOut_Mode, // kDifference_Op
SkXfermode::kModulate_Mode, // kIntersect_Op
SkXfermode::kSrcOver_Mode, // kUnion_Op
SkXfermode::kXor_Mode, // kXOR_Op
SkXfermode::kClear_Mode, // kReverseDifference_Op
SkXfermode::kSrc_Mode, // kReplace_Op
};
return modeMap[op];
}
static inline GrPixelConfig fmt_to_config(SkTextureCompressor::Format fmt) {
GrPixelConfig config;
switch (fmt) {
case SkTextureCompressor::kLATC_Format:
config = kLATC_GrPixelConfig;
break;
case SkTextureCompressor::kR11_EAC_Format:
config = kR11_EAC_GrPixelConfig;
break;
case SkTextureCompressor::kASTC_12x12_Format:
config = kASTC_12x12_GrPixelConfig;
break;
case SkTextureCompressor::kETC1_Format:
config = kETC1_GrPixelConfig;
break;
default:
SkDEBUGFAIL("No GrPixelConfig for compression format!");
// Best guess
config = kAlpha_8_GrPixelConfig;
break;
}
return config;
}
static bool choose_compressed_fmt(const GrDrawTargetCaps* caps,
SkTextureCompressor::Format *fmt) {
if (NULL == fmt) {
return false;
}
// We can't use scratch textures without the ability to update
// compressed textures...
if (!(caps->compressedTexSubImageSupport())) {
return false;
}
// Figure out what our preferred texture type is. If ASTC is available, that always
// gives the biggest win. Otherwise, in terms of compression speed and accuracy,
// LATC has a slight edge over R11 EAC.
if (caps->isConfigTexturable(kASTC_12x12_GrPixelConfig)) {
*fmt = SkTextureCompressor::kASTC_12x12_Format;
return true;
} else if (caps->isConfigTexturable(kLATC_GrPixelConfig)) {
*fmt = SkTextureCompressor::kLATC_Format;
return true;
} else if (caps->isConfigTexturable(kR11_EAC_GrPixelConfig)) {
*fmt = SkTextureCompressor::kR11_EAC_Format;
return true;
}
return false;
}
}
/**
* Draw a single rect element of the clip stack into the accumulation bitmap
*/
void GrSWMaskHelper::draw(const SkRect& rect, SkRegion::Op op,
bool antiAlias, uint8_t alpha) {
SkPaint paint;
SkXfermode* mode = SkXfermode::Create(op_to_mode(op));
SkASSERT(kNone_CompressionMode == fCompressionMode);
paint.setXfermode(mode);
paint.setAntiAlias(antiAlias);
paint.setColor(SkColorSetARGB(alpha, alpha, alpha, alpha));
fDraw.drawRect(rect, paint);
SkSafeUnref(mode);
}
/**
* Draw a single path element of the clip stack into the accumulation bitmap
*/
void GrSWMaskHelper::draw(const SkPath& path, const SkStrokeRec& stroke, SkRegion::Op op,
bool antiAlias, uint8_t alpha) {
SkPaint paint;
if (stroke.isHairlineStyle()) {
paint.setStyle(SkPaint::kStroke_Style);
paint.setStrokeWidth(SK_Scalar1);
} else {
if (stroke.isFillStyle()) {
paint.setStyle(SkPaint::kFill_Style);
} else {
paint.setStyle(SkPaint::kStroke_Style);
paint.setStrokeJoin(stroke.getJoin());
paint.setStrokeCap(stroke.getCap());
paint.setStrokeWidth(stroke.getWidth());
}
}
paint.setAntiAlias(antiAlias);
SkTBlitterAllocator allocator;
SkBlitter* blitter = NULL;
if (kBlitter_CompressionMode == fCompressionMode) {
SkASSERT(fCompressedBuffer.get());
blitter = SkTextureCompressor::CreateBlitterForFormat(
fBM.width(), fBM.height(), fCompressedBuffer.get(), &allocator, fCompressedFormat);
}
if (SkRegion::kReplace_Op == op && 0xFF == alpha) {
SkASSERT(0xFF == paint.getAlpha());
fDraw.drawPathCoverage(path, paint, blitter);
} else {
paint.setXfermodeMode(op_to_mode(op));
paint.setColor(SkColorSetARGB(alpha, alpha, alpha, alpha));
fDraw.drawPath(path, paint, blitter);
}
}
bool GrSWMaskHelper::init(const SkIRect& resultBounds,
const SkMatrix* matrix,
bool allowCompression) {
if (matrix) {
fMatrix = *matrix;
} else {
fMatrix.setIdentity();
}
// Now translate so the bound's UL corner is at the origin
fMatrix.postTranslate(-resultBounds.fLeft * SK_Scalar1,
-resultBounds.fTop * SK_Scalar1);
SkIRect bounds = SkIRect::MakeWH(resultBounds.width(),
resultBounds.height());
if (allowCompression &&
fContext->getOptions().fDrawPathToCompressedTexture &&
choose_compressed_fmt(fContext->getGpu()->caps(), &fCompressedFormat)) {
fCompressionMode = kCompress_CompressionMode;
}
// Make sure that the width is a multiple of the desired block dimensions
// to allow for specialized SIMD instructions that compress multiple blocks at a time.
int cmpWidth = bounds.fRight;
int cmpHeight = bounds.fBottom;
if (kCompress_CompressionMode == fCompressionMode) {
int dimX, dimY;
SkTextureCompressor::GetBlockDimensions(fCompressedFormat, &dimX, &dimY);
cmpWidth = dimX * ((cmpWidth + (dimX - 1)) / dimX);
cmpHeight = dimY * ((cmpHeight + (dimY - 1)) / dimY);
// Can we create a blitter?
if (SkTextureCompressor::ExistsBlitterForFormat(fCompressedFormat)) {
int cmpSz = SkTextureCompressor::GetCompressedDataSize(
fCompressedFormat, cmpWidth, cmpHeight);
SkASSERT(cmpSz > 0);
SkASSERT(NULL == fCompressedBuffer.get());
fCompressedBuffer.reset(cmpSz);
fCompressionMode = kBlitter_CompressionMode;
}
}
// If we don't have a custom blitter, then we either need a bitmap to compress
// from or a bitmap that we're going to use as a texture. In any case, we should
// allocate the pixels for a bitmap
const SkImageInfo bmImageInfo = SkImageInfo::MakeA8(cmpWidth, cmpHeight);
if (kBlitter_CompressionMode != fCompressionMode) {
if (!fBM.tryAllocPixels(bmImageInfo)) {
return false;
}
sk_bzero(fBM.getPixels(), fBM.getSafeSize());
} else {
// Otherwise, we just need to remember how big the buffer is...
fBM.setInfo(bmImageInfo);
}
sk_bzero(&fDraw, sizeof(fDraw));
fRasterClip.setRect(bounds);
fDraw.fRC = &fRasterClip;
fDraw.fClip = &fRasterClip.bwRgn();
fDraw.fMatrix = &fMatrix;
fDraw.fBitmap = &fBM;
return true;
}
/**
* Get a texture (from the texture cache) of the correct size & format.
*/
GrTexture* GrSWMaskHelper::createTexture() {
GrSurfaceDesc desc;
desc.fWidth = fBM.width();
desc.fHeight = fBM.height();
desc.fConfig = kAlpha_8_GrPixelConfig;
if (kNone_CompressionMode != fCompressionMode) {
#ifdef SK_DEBUG
int dimX, dimY;
SkTextureCompressor::GetBlockDimensions(fCompressedFormat, &dimX, &dimY);
SkASSERT((desc.fWidth % dimX) == 0);
SkASSERT((desc.fHeight % dimY) == 0);
#endif
desc.fConfig = fmt_to_config(fCompressedFormat);
SkASSERT(fContext->getGpu()->caps()->isConfigTexturable(desc.fConfig));
}
return fContext->refScratchTexture(desc, GrContext::kApprox_ScratchTexMatch);
}
void GrSWMaskHelper::sendTextureData(GrTexture *texture, const GrSurfaceDesc& desc,
const void *data, size_t rowbytes) {
// If we aren't reusing scratch textures we don't need to flush before
// writing since no one else will be using 'texture'
bool reuseScratch = fContext->getGpu()->caps()->reuseScratchTextures();
// Since we're uploading to it, and it's compressed, 'texture' shouldn't
// have a render target.
SkASSERT(NULL == texture->asRenderTarget());
texture->writePixels(0, 0, desc.fWidth, desc.fHeight,
desc.fConfig, data, rowbytes,
reuseScratch ? 0 : GrContext::kDontFlush_PixelOpsFlag);
}
void GrSWMaskHelper::compressTextureData(GrTexture *texture, const GrSurfaceDesc& desc) {
SkASSERT(GrPixelConfigIsCompressed(desc.fConfig));
SkASSERT(fmt_to_config(fCompressedFormat) == desc.fConfig);
SkAutoDataUnref cmpData(SkTextureCompressor::CompressBitmapToFormat(fBM, fCompressedFormat));
SkASSERT(cmpData);
this->sendTextureData(texture, desc, cmpData->data(), 0);
}
/**
* Move the result of the software mask generation back to the gpu
*/
void GrSWMaskHelper::toTexture(GrTexture *texture) {
SkAutoLockPixels alp(fBM);
GrSurfaceDesc desc;
desc.fWidth = fBM.width();
desc.fHeight = fBM.height();
desc.fConfig = texture->config();
// First see if we should compress this texture before uploading.
switch (fCompressionMode) {
case kNone_CompressionMode:
this->sendTextureData(texture, desc, fBM.getPixels(), fBM.rowBytes());
break;
case kCompress_CompressionMode:
this->compressTextureData(texture, desc);
break;
case kBlitter_CompressionMode:
SkASSERT(fCompressedBuffer.get());
this->sendTextureData(texture, desc, fCompressedBuffer.get(), 0);
break;
}
}
/**
* Convert mask generation results to a signed distance field
*/
void GrSWMaskHelper::toSDF(unsigned char* sdf) {
SkAutoLockPixels alp(fBM);
SkGenerateDistanceFieldFromA8Image(sdf, (const unsigned char*)fBM.getPixels(),
fBM.width(), fBM.height(), fBM.rowBytes());
}
////////////////////////////////////////////////////////////////////////////////
/**
* Software rasterizes path to A8 mask (possibly using the context's matrix)
* and uploads the result to a scratch texture. Returns the resulting
* texture on success; NULL on failure.
*/
GrTexture* GrSWMaskHelper::DrawPathMaskToTexture(GrContext* context,
const SkPath& path,
const SkStrokeRec& stroke,
const SkIRect& resultBounds,
bool antiAlias,
const SkMatrix* matrix) {
GrSWMaskHelper helper(context);
if (!helper.init(resultBounds, matrix)) {
return NULL;
}
helper.draw(path, stroke, SkRegion::kReplace_Op, antiAlias, 0xFF);
GrTexture* texture(helper.createTexture());
if (!texture) {
return NULL;
}
helper.toTexture(texture);
return texture;
}
void GrSWMaskHelper::DrawToTargetWithPathMask(GrTexture* texture,
GrDrawTarget* target,
GrPipelineBuilder* pipelineBuilder,
GrColor color,
const SkMatrix& viewMatrix,
const SkIRect& rect) {
SkMatrix invert;
if (!viewMatrix.invert(&invert)) {
return;
}
GrPipelineBuilder::AutoRestoreFragmentProcessors arfp(pipelineBuilder);
SkRect dstRect = SkRect::MakeLTRB(SK_Scalar1 * rect.fLeft,
SK_Scalar1 * rect.fTop,
SK_Scalar1 * rect.fRight,
SK_Scalar1 * rect.fBottom);
// We use device coords to compute the texture coordinates. We take the device coords and apply
// a translation so that the top-left of the device bounds maps to 0,0, and then a scaling
// matrix to normalized coords.
SkMatrix maskMatrix;
maskMatrix.setIDiv(texture->width(), texture->height());
maskMatrix.preTranslate(SkIntToScalar(-rect.fLeft), SkIntToScalar(-rect.fTop));
pipelineBuilder->addCoverageProcessor(
GrSimpleTextureEffect::Create(texture,
maskMatrix,
GrTextureParams::kNone_FilterMode,
kDevice_GrCoordSet))->unref();
target->drawRect(pipelineBuilder, color, SkMatrix::I(), dstRect, NULL, &invert);
}
|