aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/GrResourceCache.cpp
blob: cb6bcf75fd7fa284276828679b24dc2df888e1c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742

/*
 * Copyright 2014 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */


#include "GrResourceCache.h"
#include "GrGpuResourceCacheAccess.h"
#include "GrTracing.h"
#include "SkChecksum.h"
#include "SkGr.h"
#include "SkMessageBus.h"
#include "SkTSort.h"

DECLARE_SKMESSAGEBUS_MESSAGE(GrUniqueKeyInvalidatedMessage);

//////////////////////////////////////////////////////////////////////////////

GrScratchKey::ResourceType GrScratchKey::GenerateResourceType() {
    static int32_t gType = INHERITED::kInvalidDomain + 1;

    int32_t type = sk_atomic_inc(&gType);
    if (type > SK_MaxU16) {
        SkFAIL("Too many Resource Types");
    }

    return static_cast<ResourceType>(type);
}

GrUniqueKey::Domain GrUniqueKey::GenerateDomain() {
    static int32_t gDomain = INHERITED::kInvalidDomain + 1;

    int32_t domain = sk_atomic_inc(&gDomain);
    if (domain > SK_MaxU16) {
        SkFAIL("Too many GrUniqueKey Domains");
    }

    return static_cast<Domain>(domain);
}

uint32_t GrResourceKeyHash(const uint32_t* data, size_t size) {
    return SkChecksum::Compute(data, size);
}

//////////////////////////////////////////////////////////////////////////////

class GrResourceCache::AutoValidate : ::SkNoncopyable {
public:
    AutoValidate(GrResourceCache* cache) : fCache(cache) { cache->validate(); }
    ~AutoValidate() { fCache->validate(); }
private:
    GrResourceCache* fCache;
};

 //////////////////////////////////////////////////////////////////////////////


GrResourceCache::GrResourceCache(const GrCaps* caps)
    : fTimestamp(0)
    , fMaxCount(kDefaultMaxCount)
    , fMaxBytes(kDefaultMaxSize)
    , fMaxUnusedFlushes(kDefaultMaxUnusedFlushes)
#if GR_CACHE_STATS
    , fHighWaterCount(0)
    , fHighWaterBytes(0)
    , fBudgetedHighWaterCount(0)
    , fBudgetedHighWaterBytes(0)
#endif
    , fBytes(0)
    , fBudgetedCount(0)
    , fBudgetedBytes(0)
    , fOverBudgetCB(nullptr)
    , fOverBudgetData(nullptr)
    , fFlushTimestamps(nullptr)
    , fLastFlushTimestampIndex(0)
    , fPreferVRAMUseOverFlushes(caps->preferVRAMUseOverFlushes()) {
    SkDEBUGCODE(fCount = 0;)
    SkDEBUGCODE(fNewlyPurgeableResourceForValidation = nullptr;)
    this->resetFlushTimestamps();
}

GrResourceCache::~GrResourceCache() {
    this->releaseAll();
    delete[] fFlushTimestamps;
}

void GrResourceCache::setLimits(int count, size_t bytes, int maxUnusedFlushes) {
    fMaxCount = count;
    fMaxBytes = bytes;
    fMaxUnusedFlushes = maxUnusedFlushes;
    this->resetFlushTimestamps();
    this->purgeAsNeeded();
}

void GrResourceCache::resetFlushTimestamps() {
    delete[] fFlushTimestamps;

    // We assume this number is a power of two when wrapping indices into the timestamp array.
    fMaxUnusedFlushes = SkNextPow2(fMaxUnusedFlushes);

    // Since our implementation is to store the timestamps of the last fMaxUnusedFlushes flush calls
    // we just turn the feature off if that array would be large.
    static const int kMaxSupportedTimestampHistory = 128;

    if (fMaxUnusedFlushes > kMaxSupportedTimestampHistory) {
        fFlushTimestamps = nullptr;
        return;
    }

    fFlushTimestamps = new uint32_t[fMaxUnusedFlushes];
    fLastFlushTimestampIndex = 0;
    // Set all the historical flush timestamps to initially be at the beginning of time (timestamp
    // 0).
    sk_bzero(fFlushTimestamps, fMaxUnusedFlushes * sizeof(uint32_t));
}

void GrResourceCache::insertResource(GrGpuResource* resource) {
    SkASSERT(resource);
    SkASSERT(!this->isInCache(resource));
    SkASSERT(!resource->wasDestroyed());
    SkASSERT(!resource->isPurgeable());

    // We must set the timestamp before adding to the array in case the timestamp wraps and we wind
    // up iterating over all the resources that already have timestamps.
    resource->cacheAccess().setTimestamp(this->getNextTimestamp());

    this->addToNonpurgeableArray(resource);

    size_t size = resource->gpuMemorySize();
    SkDEBUGCODE(++fCount;)
    fBytes += size;
#if GR_CACHE_STATS
    fHighWaterCount = SkTMax(this->getResourceCount(), fHighWaterCount);
    fHighWaterBytes = SkTMax(fBytes, fHighWaterBytes);
#endif
    if (resource->resourcePriv().isBudgeted()) {
        ++fBudgetedCount;
        fBudgetedBytes += size;
        TRACE_COUNTER2(TRACE_DISABLED_BY_DEFAULT("skia.gpu.cache"), "skia budget", "used",
                       fBudgetedBytes, "free", fMaxBytes - fBudgetedBytes);
#if GR_CACHE_STATS
        fBudgetedHighWaterCount = SkTMax(fBudgetedCount, fBudgetedHighWaterCount);
        fBudgetedHighWaterBytes = SkTMax(fBudgetedBytes, fBudgetedHighWaterBytes);
#endif
    }
    if (resource->resourcePriv().getScratchKey().isValid()) {
        SkASSERT(!resource->cacheAccess().isExternal());
        fScratchMap.insert(resource->resourcePriv().getScratchKey(), resource);
    }

    this->purgeAsNeeded();
}

void GrResourceCache::removeResource(GrGpuResource* resource) {
    this->validate();
    SkASSERT(this->isInCache(resource));

    if (resource->isPurgeable()) {
        fPurgeableQueue.remove(resource);
    } else {
        this->removeFromNonpurgeableArray(resource);
    }

    size_t size = resource->gpuMemorySize();
    SkDEBUGCODE(--fCount;)
    fBytes -= size;
    if (resource->resourcePriv().isBudgeted()) {
        --fBudgetedCount;
        fBudgetedBytes -= size;
        TRACE_COUNTER2(TRACE_DISABLED_BY_DEFAULT("skia.gpu.cache"), "skia budget", "used",
                       fBudgetedBytes, "free", fMaxBytes - fBudgetedBytes);
    }

    if (resource->resourcePriv().getScratchKey().isValid()) {
        fScratchMap.remove(resource->resourcePriv().getScratchKey(), resource);
    }
    if (resource->getUniqueKey().isValid()) {
        fUniqueHash.remove(resource->getUniqueKey());
    }
    this->validate();
}

void GrResourceCache::abandonAll() {
    AutoValidate av(this);

    while (fNonpurgeableResources.count()) {
        GrGpuResource* back = *(fNonpurgeableResources.end() - 1);
        SkASSERT(!back->wasDestroyed());
        back->cacheAccess().abandon();
    }

    while (fPurgeableQueue.count()) {
        GrGpuResource* top = fPurgeableQueue.peek();
        SkASSERT(!top->wasDestroyed());
        top->cacheAccess().abandon();
    }

    SkASSERT(!fScratchMap.count());
    SkASSERT(!fUniqueHash.count());
    SkASSERT(!fCount);
    SkASSERT(!this->getResourceCount());
    SkASSERT(!fBytes);
    SkASSERT(!fBudgetedCount);
    SkASSERT(!fBudgetedBytes);
}

void GrResourceCache::releaseAll() {
    AutoValidate av(this);

    while(fNonpurgeableResources.count()) {
        GrGpuResource* back = *(fNonpurgeableResources.end() - 1);
        SkASSERT(!back->wasDestroyed());
        back->cacheAccess().release();
    }

    while (fPurgeableQueue.count()) {
        GrGpuResource* top = fPurgeableQueue.peek();
        SkASSERT(!top->wasDestroyed());
        top->cacheAccess().release();
    }

    SkASSERT(!fScratchMap.count());
    SkASSERT(!fUniqueHash.count());
    SkASSERT(!fCount);
    SkASSERT(!this->getResourceCount());
    SkASSERT(!fBytes);
    SkASSERT(!fBudgetedCount);
    SkASSERT(!fBudgetedBytes);
}

class GrResourceCache::AvailableForScratchUse {
public:
    AvailableForScratchUse(bool rejectPendingIO) : fRejectPendingIO(rejectPendingIO) { }

    bool operator()(const GrGpuResource* resource) const {
        if (resource->internalHasRef() || !resource->cacheAccess().isScratch()) {
            return false;
        }
        return !fRejectPendingIO || !resource->internalHasPendingIO();
    }

private:
    bool fRejectPendingIO;
};

GrGpuResource* GrResourceCache::findAndRefScratchResource(const GrScratchKey& scratchKey,
                                                          size_t resourceSize,
                                                          uint32_t flags) {
    SkASSERT(scratchKey.isValid());

    GrGpuResource* resource;
    if (flags & (kPreferNoPendingIO_ScratchFlag | kRequireNoPendingIO_ScratchFlag)) {
        resource = fScratchMap.find(scratchKey, AvailableForScratchUse(true));
        if (resource) {
            this->refAndMakeResourceMRU(resource);
            this->validate();
            return resource;
        } else if (flags & kRequireNoPendingIO_ScratchFlag) {
            return nullptr;
        }
        // We would prefer to consume more available VRAM rather than flushing
        // immediately, but on ANGLE this can lead to starving of the GPU.
        if (fPreferVRAMUseOverFlushes && this->wouldFit(resourceSize)) {
            // kPrefer is specified, we didn't find a resource without pending io,
            // but there is still space in our budget for the resource so force
            // the caller to allocate a new resource.
            return nullptr;
        }
    }
    resource = fScratchMap.find(scratchKey, AvailableForScratchUse(false));
    if (resource) {
        this->refAndMakeResourceMRU(resource);
        this->validate();
    }
    return resource;
}

void GrResourceCache::willRemoveScratchKey(const GrGpuResource* resource) {
    SkASSERT(resource->resourcePriv().getScratchKey().isValid());
    fScratchMap.remove(resource->resourcePriv().getScratchKey(), resource);
}

void GrResourceCache::removeUniqueKey(GrGpuResource* resource) {
    // Someone has a ref to this resource in order to have removed the key. When the ref count
    // reaches zero we will get a ref cnt notification and figure out what to do with it.
    if (resource->getUniqueKey().isValid()) {
        SkASSERT(resource == fUniqueHash.find(resource->getUniqueKey()));
        fUniqueHash.remove(resource->getUniqueKey());
    }
    resource->cacheAccess().removeUniqueKey();
    this->validate();
}

void GrResourceCache::changeUniqueKey(GrGpuResource* resource, const GrUniqueKey& newKey) {
    SkASSERT(resource);
    SkASSERT(this->isInCache(resource));

    // Remove the entry for this resource if it already has a unique key.
    if (resource->getUniqueKey().isValid()) {
        SkASSERT(resource == fUniqueHash.find(resource->getUniqueKey()));
        fUniqueHash.remove(resource->getUniqueKey());
        SkASSERT(nullptr == fUniqueHash.find(resource->getUniqueKey()));
    }

    // If another resource has the new key, remove its key then install the key on this resource.
    if (newKey.isValid()) {
        if (GrGpuResource* old = fUniqueHash.find(newKey)) {
            // If the old resource using the key is purgeable and is unreachable, then remove it.
            if (!old->resourcePriv().getScratchKey().isValid() && old->isPurgeable()) {
                // release may call validate() which will assert that resource is in fUniqueHash
                // if it has a valid key. So in debug reset the key here before we assign it.
                SkDEBUGCODE(resource->cacheAccess().removeUniqueKey();)
                old->cacheAccess().release();
            } else {
                fUniqueHash.remove(newKey);
                old->cacheAccess().removeUniqueKey();
            }
        }
        SkASSERT(nullptr == fUniqueHash.find(newKey));
        resource->cacheAccess().setUniqueKey(newKey);
        fUniqueHash.add(resource);
    } else {
        resource->cacheAccess().removeUniqueKey();
    }

    this->validate();
}

void GrResourceCache::refAndMakeResourceMRU(GrGpuResource* resource) {
    SkASSERT(resource);
    SkASSERT(this->isInCache(resource));

    if (resource->isPurgeable()) {
        // It's about to become unpurgeable.
        fPurgeableQueue.remove(resource);
        this->addToNonpurgeableArray(resource);
    }
    resource->ref();

    resource->cacheAccess().setTimestamp(this->getNextTimestamp());
    this->validate();
}

void GrResourceCache::notifyCntReachedZero(GrGpuResource* resource, uint32_t flags) {
    SkASSERT(resource);
    SkASSERT(!resource->wasDestroyed());
    SkASSERT(flags);
    SkASSERT(this->isInCache(resource));
    // This resource should always be in the nonpurgeable array when this function is called. It
    // will be moved to the queue if it is newly purgeable.
    SkASSERT(fNonpurgeableResources[*resource->cacheAccess().accessCacheIndex()] == resource);

    if (SkToBool(ResourceAccess::kRefCntReachedZero_RefNotificationFlag & flags)) {
#ifdef SK_DEBUG
        // When the timestamp overflows validate() is called. validate() checks that resources in
        // the nonpurgeable array are indeed not purgeable. However, the movement from the array to
        // the purgeable queue happens just below in this function. So we mark it as an exception.
        if (resource->isPurgeable()) {
            fNewlyPurgeableResourceForValidation = resource;
        }
#endif
        resource->cacheAccess().setTimestamp(this->getNextTimestamp());
        SkDEBUGCODE(fNewlyPurgeableResourceForValidation = nullptr);
    }

    if (!SkToBool(ResourceAccess::kAllCntsReachedZero_RefNotificationFlag & flags)) {
        SkASSERT(!resource->isPurgeable());
        return;
    }

    SkASSERT(resource->isPurgeable());
    this->removeFromNonpurgeableArray(resource);
    fPurgeableQueue.insert(resource);

    if (!resource->resourcePriv().isBudgeted()) {
        // Check whether this resource could still be used as a scratch resource.
        if (!resource->cacheAccess().isExternal() &&
            resource->resourcePriv().getScratchKey().isValid()) {
            // We won't purge an existing resource to make room for this one.
            if (fBudgetedCount < fMaxCount &&
                fBudgetedBytes + resource->gpuMemorySize() <= fMaxBytes) {
                resource->resourcePriv().makeBudgeted();
                return;
            }
        }
    } else {
        // Purge the resource immediately if we're over budget
        // Also purge if the resource has neither a valid scratch key nor a unique key.
        bool noKey = !resource->resourcePriv().getScratchKey().isValid() &&
                     !resource->getUniqueKey().isValid();
        if (!this->overBudget() && !noKey) {
            return;
        }
    }

    SkDEBUGCODE(int beforeCount = this->getResourceCount();)
    resource->cacheAccess().release();
    // We should at least free this resource, perhaps dependent resources as well.
    SkASSERT(this->getResourceCount() < beforeCount);
    this->validate();
}

void GrResourceCache::didChangeGpuMemorySize(const GrGpuResource* resource, size_t oldSize) {
    // SkASSERT(!fPurging); GrPathRange increases size during flush. :(
    SkASSERT(resource);
    SkASSERT(this->isInCache(resource));

    ptrdiff_t delta = resource->gpuMemorySize() - oldSize;

    fBytes += delta;
#if GR_CACHE_STATS
    fHighWaterBytes = SkTMax(fBytes, fHighWaterBytes);
#endif
    if (resource->resourcePriv().isBudgeted()) {
        fBudgetedBytes += delta;
        TRACE_COUNTER2(TRACE_DISABLED_BY_DEFAULT("skia.gpu.cache"), "skia budget", "used",
                       fBudgetedBytes, "free", fMaxBytes - fBudgetedBytes);
#if GR_CACHE_STATS
        fBudgetedHighWaterBytes = SkTMax(fBudgetedBytes, fBudgetedHighWaterBytes);
#endif
    }

    this->purgeAsNeeded();
    this->validate();
}

void GrResourceCache::didChangeBudgetStatus(GrGpuResource* resource) {
    SkASSERT(resource);
    SkASSERT(this->isInCache(resource));

    size_t size = resource->gpuMemorySize();

    if (resource->resourcePriv().isBudgeted()) {
        ++fBudgetedCount;
        fBudgetedBytes += size;
#if GR_CACHE_STATS
        fBudgetedHighWaterBytes = SkTMax(fBudgetedBytes, fBudgetedHighWaterBytes);
        fBudgetedHighWaterCount = SkTMax(fBudgetedCount, fBudgetedHighWaterCount);
#endif
        this->purgeAsNeeded();
    } else {
        --fBudgetedCount;
        fBudgetedBytes -= size;
    }
    TRACE_COUNTER2(TRACE_DISABLED_BY_DEFAULT("skia.gpu.cache"), "skia budget", "used",
                   fBudgetedBytes, "free", fMaxBytes - fBudgetedBytes);

    this->validate();
}

void GrResourceCache::purgeAsNeeded() {
    SkTArray<GrUniqueKeyInvalidatedMessage> invalidKeyMsgs;
    fInvalidUniqueKeyInbox.poll(&invalidKeyMsgs);
    if (invalidKeyMsgs.count()) {
        this->processInvalidUniqueKeys(invalidKeyMsgs);
    }

    if (fFlushTimestamps) {
        // Assuming kNumFlushesToDeleteUnusedResource is a power of 2.
        SkASSERT(SkIsPow2(fMaxUnusedFlushes));
        int oldestFlushIndex = (fLastFlushTimestampIndex + 1) & (fMaxUnusedFlushes - 1);

        uint32_t oldestAllowedTimestamp = fFlushTimestamps[oldestFlushIndex];
        while (fPurgeableQueue.count()) {
            uint32_t oldestResourceTimestamp = fPurgeableQueue.peek()->cacheAccess().timestamp();
            if (oldestAllowedTimestamp < oldestResourceTimestamp) {
                break;
            }
            GrGpuResource* resource = fPurgeableQueue.peek();
            SkASSERT(resource->isPurgeable());
            resource->cacheAccess().release();
        }
    }

    bool stillOverbudget = this->overBudget();
    while (stillOverbudget && fPurgeableQueue.count()) {
        GrGpuResource* resource = fPurgeableQueue.peek();
        SkASSERT(resource->isPurgeable());
        resource->cacheAccess().release();
        stillOverbudget = this->overBudget();
    }

    this->validate();

    if (stillOverbudget) {
        // Despite the purge we're still over budget. Call our over budget callback. If this frees
        // any resources then we'll get notified and take appropriate action.
        (*fOverBudgetCB)(fOverBudgetData);
        this->validate();
    }
}

void GrResourceCache::purgeAllUnlocked() {
    // We could disable maintaining the heap property here, but it would add a lot of complexity.
    // Moreover, this is rarely called.
    while (fPurgeableQueue.count()) {
        GrGpuResource* resource = fPurgeableQueue.peek();
        SkASSERT(resource->isPurgeable());
        resource->cacheAccess().release();
    }

    this->validate();
}

void GrResourceCache::processInvalidUniqueKeys(
    const SkTArray<GrUniqueKeyInvalidatedMessage>& msgs) {
    for (int i = 0; i < msgs.count(); ++i) {
        GrGpuResource* resource = this->findAndRefUniqueResource(msgs[i].key());
        if (resource) {
            resource->resourcePriv().removeUniqueKey();
            resource->unref(); // If this resource is now purgeable, the cache will be notified.
        }
    }
}

void GrResourceCache::addToNonpurgeableArray(GrGpuResource* resource) {
    int index = fNonpurgeableResources.count();
    *fNonpurgeableResources.append() = resource;
    *resource->cacheAccess().accessCacheIndex() = index;
}

void GrResourceCache::removeFromNonpurgeableArray(GrGpuResource* resource) {
    int* index = resource->cacheAccess().accessCacheIndex();
    // Fill the whole we will create in the array with the tail object, adjust its index, and
    // then pop the array
    GrGpuResource* tail = *(fNonpurgeableResources.end() - 1);
    SkASSERT(fNonpurgeableResources[*index] == resource);
    fNonpurgeableResources[*index] = tail;
    *tail->cacheAccess().accessCacheIndex() = *index;
    fNonpurgeableResources.pop();
    SkDEBUGCODE(*index = -1);
}

uint32_t GrResourceCache::getNextTimestamp() {
    // If we wrap then all the existing resources will appear older than any resources that get
    // a timestamp after the wrap.
    if (0 == fTimestamp) {
        int count = this->getResourceCount();
        if (count) {
            // Reset all the timestamps. We sort the resources by timestamp and then assign
            // sequential timestamps beginning with 0. This is O(n*lg(n)) but it should be extremely
            // rare.
            SkTDArray<GrGpuResource*> sortedPurgeableResources;
            sortedPurgeableResources.setReserve(fPurgeableQueue.count());

            while (fPurgeableQueue.count()) {
                *sortedPurgeableResources.append() = fPurgeableQueue.peek();
                fPurgeableQueue.pop();
            }

            struct Less {
                bool operator()(GrGpuResource* a, GrGpuResource* b) {
                    return CompareTimestamp(a,b);
                }
            };
            Less less;
            SkTQSort(fNonpurgeableResources.begin(), fNonpurgeableResources.end() - 1, less);

            // Pick resources out of the purgeable and non-purgeable arrays based on lowest
            // timestamp and assign new timestamps.
            int currP = 0;
            int currNP = 0;
            while (currP < sortedPurgeableResources.count() &&
                   currNP < fNonpurgeableResources.count()) {                
                uint32_t tsP = sortedPurgeableResources[currP]->cacheAccess().timestamp();
                uint32_t tsNP = fNonpurgeableResources[currNP]->cacheAccess().timestamp();
                SkASSERT(tsP != tsNP);
                if (tsP < tsNP) {
                    sortedPurgeableResources[currP++]->cacheAccess().setTimestamp(fTimestamp++);
                } else {
                    // Correct the index in the nonpurgeable array stored on the resource post-sort.
                    *fNonpurgeableResources[currNP]->cacheAccess().accessCacheIndex() = currNP;
                    fNonpurgeableResources[currNP++]->cacheAccess().setTimestamp(fTimestamp++);
                }
            }

            // The above loop ended when we hit the end of one array. Finish the other one.
            while (currP < sortedPurgeableResources.count()) {
                sortedPurgeableResources[currP++]->cacheAccess().setTimestamp(fTimestamp++);
            }
            while (currNP < fNonpurgeableResources.count()) {
                *fNonpurgeableResources[currNP]->cacheAccess().accessCacheIndex() = currNP;
                fNonpurgeableResources[currNP++]->cacheAccess().setTimestamp(fTimestamp++);
            }

            // Rebuild the queue.
            for (int i = 0; i < sortedPurgeableResources.count(); ++i) {
                fPurgeableQueue.insert(sortedPurgeableResources[i]);
            }

            this->validate();
            SkASSERT(count == this->getResourceCount());

            // count should be the next timestamp we return.
            SkASSERT(fTimestamp == SkToU32(count));
            
            // The historical timestamps of flushes are now invalid.
            this->resetFlushTimestamps();
        }        
    }
    return fTimestamp++;
}

void GrResourceCache::notifyFlushOccurred() {
    if (fFlushTimestamps) {
        SkASSERT(SkIsPow2(fMaxUnusedFlushes));
        fLastFlushTimestampIndex = (fLastFlushTimestampIndex + 1) & (fMaxUnusedFlushes - 1);
        // get the timestamp before accessing fFlushTimestamps because getNextTimestamp will
        // reallocate fFlushTimestamps on timestamp overflow.
        uint32_t timestamp = this->getNextTimestamp();
        fFlushTimestamps[fLastFlushTimestampIndex] = timestamp;
        this->purgeAsNeeded();
    }
}

void GrResourceCache::dumpMemoryStatistics(SkTraceMemoryDump* traceMemoryDump) const {
    for (int i = 0; i < fNonpurgeableResources.count(); ++i) {
        fNonpurgeableResources[i]->dumpMemoryStatistics(traceMemoryDump);
    }
    for (int i = 0; i < fPurgeableQueue.count(); ++i) {
        fPurgeableQueue.at(i)->dumpMemoryStatistics(traceMemoryDump);
    }
}

#ifdef SK_DEBUG
void GrResourceCache::validate() const {
    // Reduce the frequency of validations for large resource counts.
    static SkRandom gRandom;
    int mask = (SkNextPow2(fCount + 1) >> 5) - 1;
    if (~mask && (gRandom.nextU() & mask)) {
        return;
    }

    struct Stats {
        size_t fBytes;
        int fBudgetedCount;
        size_t fBudgetedBytes;
        int fLocked;
        int fScratch;
        int fCouldBeScratch;
        int fContent;
        const ScratchMap* fScratchMap;
        const UniqueHash* fUniqueHash;

        Stats(const GrResourceCache* cache) {
            memset(this, 0, sizeof(*this));
            fScratchMap = &cache->fScratchMap;
            fUniqueHash = &cache->fUniqueHash;
        }

        void update(GrGpuResource* resource) {
            fBytes += resource->gpuMemorySize();

            if (!resource->isPurgeable()) {
                ++fLocked;
            }

            if (resource->cacheAccess().isScratch()) {
                SkASSERT(!resource->getUniqueKey().isValid());
                ++fScratch;
                SkASSERT(fScratchMap->countForKey(resource->resourcePriv().getScratchKey()));
                SkASSERT(!resource->cacheAccess().isExternal());
            } else if (resource->resourcePriv().getScratchKey().isValid()) {
                SkASSERT(!resource->resourcePriv().isBudgeted() ||
                         resource->getUniqueKey().isValid());
                ++fCouldBeScratch;
                SkASSERT(fScratchMap->countForKey(resource->resourcePriv().getScratchKey()));
                SkASSERT(!resource->cacheAccess().isExternal());
            }
            const GrUniqueKey& uniqueKey = resource->getUniqueKey();
            if (uniqueKey.isValid()) {
                ++fContent;
                SkASSERT(fUniqueHash->find(uniqueKey) == resource);
                SkASSERT(!resource->cacheAccess().isExternal());
                SkASSERT(resource->resourcePriv().isBudgeted());
            }

            if (resource->resourcePriv().isBudgeted()) {
                ++fBudgetedCount;
                fBudgetedBytes += resource->gpuMemorySize();
            }
        }
    };

    Stats stats(this);

    for (int i = 0; i < fNonpurgeableResources.count(); ++i) {
        SkASSERT(!fNonpurgeableResources[i]->isPurgeable() ||
                 fNewlyPurgeableResourceForValidation == fNonpurgeableResources[i]);
        SkASSERT(*fNonpurgeableResources[i]->cacheAccess().accessCacheIndex() == i);
        SkASSERT(!fNonpurgeableResources[i]->wasDestroyed());
        stats.update(fNonpurgeableResources[i]);
    }
    for (int i = 0; i < fPurgeableQueue.count(); ++i) {
        SkASSERT(fPurgeableQueue.at(i)->isPurgeable());
        SkASSERT(*fPurgeableQueue.at(i)->cacheAccess().accessCacheIndex() == i);
        SkASSERT(!fPurgeableQueue.at(i)->wasDestroyed());
        stats.update(fPurgeableQueue.at(i));
    }

    SkASSERT(fCount == this->getResourceCount());
    SkASSERT(fBudgetedCount <= fCount);
    SkASSERT(fBudgetedBytes <= fBytes);
    SkASSERT(stats.fBytes == fBytes);
    SkASSERT(stats.fBudgetedBytes == fBudgetedBytes);
    SkASSERT(stats.fBudgetedCount == fBudgetedCount);
#if GR_CACHE_STATS
    SkASSERT(fBudgetedHighWaterCount <= fHighWaterCount);
    SkASSERT(fBudgetedHighWaterBytes <= fHighWaterBytes);
    SkASSERT(fBytes <= fHighWaterBytes);
    SkASSERT(fCount <= fHighWaterCount);
    SkASSERT(fBudgetedBytes <= fBudgetedHighWaterBytes);
    SkASSERT(fBudgetedCount <= fBudgetedHighWaterCount);
#endif
    SkASSERT(stats.fContent == fUniqueHash.count());
    SkASSERT(stats.fScratch + stats.fCouldBeScratch == fScratchMap.count());

    // This assertion is not currently valid because we can be in recursive notifyCntReachedZero()
    // calls. This will be fixed when subresource registration is explicit.
    // bool overBudget = budgetedBytes > fMaxBytes || budgetedCount > fMaxCount;
    // SkASSERT(!overBudget || locked == count || fPurging);
}

bool GrResourceCache::isInCache(const GrGpuResource* resource) const {
    int index = *resource->cacheAccess().accessCacheIndex();
    if (index < 0) {
        return false;
    }
    if (index < fPurgeableQueue.count() && fPurgeableQueue.at(index) == resource) {
        return true;
    }
    if (index < fNonpurgeableResources.count() && fNonpurgeableResources[index] == resource) {
        return true;
    }
    SkDEBUGFAIL("Resource index should be -1 or the resource should be in the cache.");
    return false;
}

#endif