1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
|
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrRedBlackTree_DEFINED
#define GrRedBlackTree_DEFINED
#include "GrConfig.h"
#include "SkTypes.h"
template <typename T>
class GrLess {
public:
bool operator()(const T& a, const T& b) const { return a < b; }
};
template <typename T>
class GrLess<T*> {
public:
bool operator()(const T* a, const T* b) const { return *a < *b; }
};
class GrStrLess {
public:
bool operator()(const char* a, const char* b) const { return strcmp(a,b) < 0; }
};
/**
* In debug build this will cause full traversals of the tree when the validate
* is called on insert and remove. Useful for debugging but very slow.
*/
#define DEEP_VALIDATE 0
/**
* A sorted tree that uses the red-black tree algorithm. Allows duplicate
* entries. Data is of type T and is compared using functor C. A single C object
* will be created and used for all comparisons.
*/
template <typename T, typename C = GrLess<T> >
class GrRedBlackTree : SkNoncopyable {
public:
/**
* Creates an empty tree.
*/
GrRedBlackTree();
virtual ~GrRedBlackTree();
/**
* Class used to iterater through the tree. The valid range of the tree
* is given by [begin(), end()). It is legal to dereference begin() but not
* end(). The iterator has preincrement and predecrement operators, it is
* legal to decerement end() if the tree is not empty to get the last
* element. However, a last() helper is provided.
*/
class Iter;
/**
* Add an element to the tree. Duplicates are allowed.
* @param t the item to add.
* @return an iterator to the item.
*/
Iter insert(const T& t);
/**
* Removes all items in the tree.
*/
void reset();
/**
* @return true if there are no items in the tree, false otherwise.
*/
bool empty() const {return 0 == fCount;}
/**
* @return the number of items in the tree.
*/
int count() const {return fCount;}
/**
* @return an iterator to the first item in sorted order, or end() if empty
*/
Iter begin();
/**
* Gets the last valid iterator. This is always valid, even on an empty.
* However, it can never be dereferenced. Useful as a loop terminator.
* @return an iterator that is just beyond the last item in sorted order.
*/
Iter end();
/**
* @return an iterator that to the last item in sorted order, or end() if
* empty.
*/
Iter last();
/**
* Finds an occurrence of an item.
* @param t the item to find.
* @return an iterator to a tree element equal to t or end() if none exists.
*/
Iter find(const T& t);
/**
* Finds the first of an item in iterator order.
* @param t the item to find.
* @return an iterator to the first element equal to t or end() if
* none exists.
*/
Iter findFirst(const T& t);
/**
* Finds the last of an item in iterator order.
* @param t the item to find.
* @return an iterator to the last element equal to t or end() if
* none exists.
*/
Iter findLast(const T& t);
/**
* Gets the number of items in the tree equal to t.
* @param t the item to count.
* @return number of items equal to t in the tree
*/
int countOf(const T& t) const;
/**
* Removes the item indicated by an iterator. The iterator will not be valid
* afterwards.
*
* @param iter iterator of item to remove. Must be valid (not end()).
*/
void remove(const Iter& iter) { deleteAtNode(iter.fN); }
private:
enum Color {
kRed_Color,
kBlack_Color
};
enum Child {
kLeft_Child = 0,
kRight_Child = 1
};
struct Node {
T fItem;
Color fColor;
Node* fParent;
Node* fChildren[2];
};
void rotateRight(Node* n);
void rotateLeft(Node* n);
static Node* SuccessorNode(Node* x);
static Node* PredecessorNode(Node* x);
void deleteAtNode(Node* x);
static void RecursiveDelete(Node* x);
int onCountOf(const Node* n, const T& t) const;
#ifdef SK_DEBUG
void validate() const;
int checkNode(Node* n, int* blackHeight) const;
// checks relationship between a node and its children. allowRedRed means
// node may be in an intermediate state where a red parent has a red child.
bool validateChildRelations(const Node* n, bool allowRedRed) const;
// place to stick break point if validateChildRelations is failing.
bool validateChildRelationsFailed() const { return false; }
#else
void validate() const {}
#endif
int fCount;
Node* fRoot;
Node* fFirst;
Node* fLast;
const C fComp;
};
template <typename T, typename C>
class GrRedBlackTree<T,C>::Iter {
public:
Iter() {};
Iter(const Iter& i) {fN = i.fN; fTree = i.fTree;}
Iter& operator =(const Iter& i) {
fN = i.fN;
fTree = i.fTree;
return *this;
}
// altering the sort value of the item using this method will cause
// errors.
T& operator *() const { return fN->fItem; }
bool operator ==(const Iter& i) const {
return fN == i.fN && fTree == i.fTree;
}
bool operator !=(const Iter& i) const { return !(*this == i); }
Iter& operator ++() {
SkASSERT(*this != fTree->end());
fN = SuccessorNode(fN);
return *this;
}
Iter& operator --() {
SkASSERT(*this != fTree->begin());
if (fN) {
fN = PredecessorNode(fN);
} else {
*this = fTree->last();
}
return *this;
}
private:
friend class GrRedBlackTree;
explicit Iter(Node* n, GrRedBlackTree* tree) {
fN = n;
fTree = tree;
}
Node* fN;
GrRedBlackTree* fTree;
};
template <typename T, typename C>
GrRedBlackTree<T,C>::GrRedBlackTree() : fComp() {
fRoot = NULL;
fFirst = NULL;
fLast = NULL;
fCount = 0;
validate();
}
template <typename T, typename C>
GrRedBlackTree<T,C>::~GrRedBlackTree() {
RecursiveDelete(fRoot);
}
template <typename T, typename C>
typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::begin() {
return Iter(fFirst, this);
}
template <typename T, typename C>
typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::end() {
return Iter(NULL, this);
}
template <typename T, typename C>
typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::last() {
return Iter(fLast, this);
}
template <typename T, typename C>
typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::find(const T& t) {
Node* n = fRoot;
while (n) {
if (fComp(t, n->fItem)) {
n = n->fChildren[kLeft_Child];
} else {
if (!fComp(n->fItem, t)) {
return Iter(n, this);
}
n = n->fChildren[kRight_Child];
}
}
return end();
}
template <typename T, typename C>
typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findFirst(const T& t) {
Node* n = fRoot;
Node* leftMost = NULL;
while (n) {
if (fComp(t, n->fItem)) {
n = n->fChildren[kLeft_Child];
} else {
if (!fComp(n->fItem, t)) {
// found one. check if another in left subtree.
leftMost = n;
n = n->fChildren[kLeft_Child];
} else {
n = n->fChildren[kRight_Child];
}
}
}
return Iter(leftMost, this);
}
template <typename T, typename C>
typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findLast(const T& t) {
Node* n = fRoot;
Node* rightMost = NULL;
while (n) {
if (fComp(t, n->fItem)) {
n = n->fChildren[kLeft_Child];
} else {
if (!fComp(n->fItem, t)) {
// found one. check if another in right subtree.
rightMost = n;
}
n = n->fChildren[kRight_Child];
}
}
return Iter(rightMost, this);
}
template <typename T, typename C>
int GrRedBlackTree<T,C>::countOf(const T& t) const {
return onCountOf(fRoot, t);
}
template <typename T, typename C>
int GrRedBlackTree<T,C>::onCountOf(const Node* n, const T& t) const {
// this is count*log(n) :(
while (n) {
if (fComp(t, n->fItem)) {
n = n->fChildren[kLeft_Child];
} else {
if (!fComp(n->fItem, t)) {
int count = 1;
count += onCountOf(n->fChildren[kLeft_Child], t);
count += onCountOf(n->fChildren[kRight_Child], t);
return count;
}
n = n->fChildren[kRight_Child];
}
}
return 0;
}
template <typename T, typename C>
void GrRedBlackTree<T,C>::reset() {
RecursiveDelete(fRoot);
fRoot = NULL;
fFirst = NULL;
fLast = NULL;
fCount = 0;
}
template <typename T, typename C>
typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::insert(const T& t) {
validate();
++fCount;
Node* x = SkNEW(Node);
x->fChildren[kLeft_Child] = NULL;
x->fChildren[kRight_Child] = NULL;
x->fItem = t;
Node* returnNode = x;
Node* gp = NULL;
Node* p = NULL;
Node* n = fRoot;
Child pc = kLeft_Child; // suppress uninit warning
Child gpc = kLeft_Child;
bool first = true;
bool last = true;
while (n) {
gpc = pc;
pc = fComp(x->fItem, n->fItem) ? kLeft_Child : kRight_Child;
first = first && kLeft_Child == pc;
last = last && kRight_Child == pc;
gp = p;
p = n;
n = p->fChildren[pc];
}
if (last) {
fLast = x;
}
if (first) {
fFirst = x;
}
if (NULL == p) {
fRoot = x;
x->fColor = kBlack_Color;
x->fParent = NULL;
SkASSERT(1 == fCount);
return Iter(returnNode, this);
}
p->fChildren[pc] = x;
x->fColor = kRed_Color;
x->fParent = p;
do {
// assumptions at loop start.
SkASSERT(x);
SkASSERT(kRed_Color == x->fColor);
// can't have a grandparent but no parent.
SkASSERT(!(gp && NULL == p));
// make sure pc and gpc are correct
SkASSERT(NULL == p || p->fChildren[pc] == x);
SkASSERT(NULL == gp || gp->fChildren[gpc] == p);
// if x's parent is black then we didn't violate any of the
// red/black properties when we added x as red.
if (kBlack_Color == p->fColor) {
return Iter(returnNode, this);
}
// gp must be valid because if p was the root then it is black
SkASSERT(gp);
// gp must be black since it's child, p, is red.
SkASSERT(kBlack_Color == gp->fColor);
// x and its parent are red, violating red-black property.
Node* u = gp->fChildren[1-gpc];
// if x's uncle (p's sibling) is also red then we can flip
// p and u to black and make gp red. But then we have to recurse
// up to gp since it's parent may also be red.
if (u && kRed_Color == u->fColor) {
p->fColor = kBlack_Color;
u->fColor = kBlack_Color;
gp->fColor = kRed_Color;
x = gp;
p = x->fParent;
if (NULL == p) {
// x (prev gp) is the root, color it black and be done.
SkASSERT(fRoot == x);
x->fColor = kBlack_Color;
validate();
return Iter(returnNode, this);
}
gp = p->fParent;
pc = (p->fChildren[kLeft_Child] == x) ? kLeft_Child :
kRight_Child;
if (gp) {
gpc = (gp->fChildren[kLeft_Child] == p) ? kLeft_Child :
kRight_Child;
}
continue;
} break;
} while (true);
// Here p is red but u is black and we still have to resolve the fact
// that x and p are both red.
SkASSERT(NULL == gp->fChildren[1-gpc] || kBlack_Color == gp->fChildren[1-gpc]->fColor);
SkASSERT(kRed_Color == x->fColor);
SkASSERT(kRed_Color == p->fColor);
SkASSERT(kBlack_Color == gp->fColor);
// make x be on the same side of p as p is of gp. If it isn't already
// the case then rotate x up to p and swap their labels.
if (pc != gpc) {
if (kRight_Child == pc) {
rotateLeft(p);
Node* temp = p;
p = x;
x = temp;
pc = kLeft_Child;
} else {
rotateRight(p);
Node* temp = p;
p = x;
x = temp;
pc = kRight_Child;
}
}
// we now rotate gp down, pulling up p to be it's new parent.
// gp's child, u, that is not affected we know to be black. gp's new
// child is p's previous child (x's pre-rotation sibling) which must be
// black since p is red.
SkASSERT(NULL == p->fChildren[1-pc] ||
kBlack_Color == p->fChildren[1-pc]->fColor);
// Since gp's two children are black it can become red if p is made
// black. This leaves the black-height of both of p's new subtrees
// preserved and removes the red/red parent child relationship.
p->fColor = kBlack_Color;
gp->fColor = kRed_Color;
if (kLeft_Child == pc) {
rotateRight(gp);
} else {
rotateLeft(gp);
}
validate();
return Iter(returnNode, this);
}
template <typename T, typename C>
void GrRedBlackTree<T,C>::rotateRight(Node* n) {
/* d? d?
* / /
* n s
* / \ ---> / \
* s a? c? n
* / \ / \
* c? b? b? a?
*/
Node* d = n->fParent;
Node* s = n->fChildren[kLeft_Child];
SkASSERT(s);
Node* b = s->fChildren[kRight_Child];
if (d) {
Child c = d->fChildren[kLeft_Child] == n ? kLeft_Child :
kRight_Child;
d->fChildren[c] = s;
} else {
SkASSERT(fRoot == n);
fRoot = s;
}
s->fParent = d;
s->fChildren[kRight_Child] = n;
n->fParent = s;
n->fChildren[kLeft_Child] = b;
if (b) {
b->fParent = n;
}
GR_DEBUGASSERT(validateChildRelations(d, true));
GR_DEBUGASSERT(validateChildRelations(s, true));
GR_DEBUGASSERT(validateChildRelations(n, false));
GR_DEBUGASSERT(validateChildRelations(n->fChildren[kRight_Child], true));
GR_DEBUGASSERT(validateChildRelations(b, true));
GR_DEBUGASSERT(validateChildRelations(s->fChildren[kLeft_Child], true));
}
template <typename T, typename C>
void GrRedBlackTree<T,C>::rotateLeft(Node* n) {
Node* d = n->fParent;
Node* s = n->fChildren[kRight_Child];
SkASSERT(s);
Node* b = s->fChildren[kLeft_Child];
if (d) {
Child c = d->fChildren[kRight_Child] == n ? kRight_Child :
kLeft_Child;
d->fChildren[c] = s;
} else {
SkASSERT(fRoot == n);
fRoot = s;
}
s->fParent = d;
s->fChildren[kLeft_Child] = n;
n->fParent = s;
n->fChildren[kRight_Child] = b;
if (b) {
b->fParent = n;
}
GR_DEBUGASSERT(validateChildRelations(d, true));
GR_DEBUGASSERT(validateChildRelations(s, true));
GR_DEBUGASSERT(validateChildRelations(n, true));
GR_DEBUGASSERT(validateChildRelations(n->fChildren[kLeft_Child], true));
GR_DEBUGASSERT(validateChildRelations(b, true));
GR_DEBUGASSERT(validateChildRelations(s->fChildren[kRight_Child], true));
}
template <typename T, typename C>
typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::SuccessorNode(Node* x) {
SkASSERT(x);
if (x->fChildren[kRight_Child]) {
x = x->fChildren[kRight_Child];
while (x->fChildren[kLeft_Child]) {
x = x->fChildren[kLeft_Child];
}
return x;
}
while (x->fParent && x == x->fParent->fChildren[kRight_Child]) {
x = x->fParent;
}
return x->fParent;
}
template <typename T, typename C>
typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::PredecessorNode(Node* x) {
SkASSERT(x);
if (x->fChildren[kLeft_Child]) {
x = x->fChildren[kLeft_Child];
while (x->fChildren[kRight_Child]) {
x = x->fChildren[kRight_Child];
}
return x;
}
while (x->fParent && x == x->fParent->fChildren[kLeft_Child]) {
x = x->fParent;
}
return x->fParent;
}
template <typename T, typename C>
void GrRedBlackTree<T,C>::deleteAtNode(Node* x) {
SkASSERT(x);
validate();
--fCount;
bool hasLeft = SkToBool(x->fChildren[kLeft_Child]);
bool hasRight = SkToBool(x->fChildren[kRight_Child]);
Child c = hasLeft ? kLeft_Child : kRight_Child;
if (hasLeft && hasRight) {
// first and last can't have two children.
SkASSERT(fFirst != x);
SkASSERT(fLast != x);
// if x is an interior node then we find it's successor
// and swap them.
Node* s = x->fChildren[kRight_Child];
while (s->fChildren[kLeft_Child]) {
s = s->fChildren[kLeft_Child];
}
SkASSERT(s);
// this might be expensive relative to swapping node ptrs around.
// depends on T.
x->fItem = s->fItem;
x = s;
c = kRight_Child;
} else if (NULL == x->fParent) {
// if x was the root we just replace it with its child and make
// the new root (if the tree is not empty) black.
SkASSERT(fRoot == x);
fRoot = x->fChildren[c];
if (fRoot) {
fRoot->fParent = NULL;
fRoot->fColor = kBlack_Color;
if (x == fLast) {
SkASSERT(c == kLeft_Child);
fLast = fRoot;
} else if (x == fFirst) {
SkASSERT(c == kRight_Child);
fFirst = fRoot;
}
} else {
SkASSERT(fFirst == fLast && x == fFirst);
fFirst = NULL;
fLast = NULL;
SkASSERT(0 == fCount);
}
delete x;
validate();
return;
}
Child pc;
Node* p = x->fParent;
pc = p->fChildren[kLeft_Child] == x ? kLeft_Child : kRight_Child;
if (NULL == x->fChildren[c]) {
if (fLast == x) {
fLast = p;
SkASSERT(p == PredecessorNode(x));
} else if (fFirst == x) {
fFirst = p;
SkASSERT(p == SuccessorNode(x));
}
// x has two implicit black children.
Color xcolor = x->fColor;
p->fChildren[pc] = NULL;
delete x;
x = NULL;
// when x is red it can be with an implicit black leaf without
// violating any of the red-black tree properties.
if (kRed_Color == xcolor) {
validate();
return;
}
// s is p's other child (x's sibling)
Node* s = p->fChildren[1-pc];
//s cannot be an implicit black node because the original
// black-height at x was >= 2 and s's black-height must equal the
// initial black height of x.
SkASSERT(s);
SkASSERT(p == s->fParent);
// assigned in loop
Node* sl;
Node* sr;
bool slRed;
bool srRed;
do {
// When we start this loop x may already be deleted it is/was
// p's child on its pc side. x's children are/were black. The
// first time through the loop they are implict children.
// On later passes we will be walking up the tree and they will
// be real nodes.
// The x side of p has a black-height that is one less than the
// s side. It must be rebalanced.
SkASSERT(s);
SkASSERT(p == s->fParent);
SkASSERT(NULL == x || x->fParent == p);
//sl and sr are s's children, which may be implicit.
sl = s->fChildren[kLeft_Child];
sr = s->fChildren[kRight_Child];
// if the s is red we will rotate s and p, swap their colors so
// that x's new sibling is black
if (kRed_Color == s->fColor) {
// if s is red then it's parent must be black.
SkASSERT(kBlack_Color == p->fColor);
// s's children must also be black since s is red. They can't
// be implicit since s is red and it's black-height is >= 2.
SkASSERT(sl && kBlack_Color == sl->fColor);
SkASSERT(sr && kBlack_Color == sr->fColor);
p->fColor = kRed_Color;
s->fColor = kBlack_Color;
if (kLeft_Child == pc) {
rotateLeft(p);
s = sl;
} else {
rotateRight(p);
s = sr;
}
sl = s->fChildren[kLeft_Child];
sr = s->fChildren[kRight_Child];
}
// x and s are now both black.
SkASSERT(kBlack_Color == s->fColor);
SkASSERT(NULL == x || kBlack_Color == x->fColor);
SkASSERT(p == s->fParent);
SkASSERT(NULL == x || p == x->fParent);
// when x is deleted its subtree will have reduced black-height.
slRed = (sl && kRed_Color == sl->fColor);
srRed = (sr && kRed_Color == sr->fColor);
if (!slRed && !srRed) {
// if s can be made red that will balance out x's removal
// to make both subtrees of p have the same black-height.
if (kBlack_Color == p->fColor) {
s->fColor = kRed_Color;
// now subtree at p has black-height of one less than
// p's parent's other child's subtree. We move x up to
// p and go through the loop again. At the top of loop
// we assumed x and x's children are black, which holds
// by above ifs.
// if p is the root there is no other subtree to balance
// against.
x = p;
p = x->fParent;
if (NULL == p) {
SkASSERT(fRoot == x);
validate();
return;
} else {
pc = p->fChildren[kLeft_Child] == x ? kLeft_Child :
kRight_Child;
}
s = p->fChildren[1-pc];
SkASSERT(s);
SkASSERT(p == s->fParent);
continue;
} else if (kRed_Color == p->fColor) {
// we can make p black and s red. This balance out p's
// two subtrees and keep the same black-height as it was
// before the delete.
s->fColor = kRed_Color;
p->fColor = kBlack_Color;
validate();
return;
}
}
break;
} while (true);
// if we made it here one or both of sl and sr is red.
// s and x are black. We make sure that a red child is on
// the same side of s as s is of p.
SkASSERT(slRed || srRed);
if (kLeft_Child == pc && !srRed) {
s->fColor = kRed_Color;
sl->fColor = kBlack_Color;
rotateRight(s);
sr = s;
s = sl;
//sl = s->fChildren[kLeft_Child]; don't need this
} else if (kRight_Child == pc && !slRed) {
s->fColor = kRed_Color;
sr->fColor = kBlack_Color;
rotateLeft(s);
sl = s;
s = sr;
//sr = s->fChildren[kRight_Child]; don't need this
}
// now p is either red or black, x and s are red and s's 1-pc
// child is red.
// We rotate p towards x, pulling s up to replace p. We make
// p be black and s takes p's old color.
// Whether p was red or black, we've increased its pc subtree
// rooted at x by 1 (balancing the imbalance at the start) and
// we've also its subtree rooted at s's black-height by 1. This
// can be balanced by making s's red child be black.
s->fColor = p->fColor;
p->fColor = kBlack_Color;
if (kLeft_Child == pc) {
SkASSERT(sr && kRed_Color == sr->fColor);
sr->fColor = kBlack_Color;
rotateLeft(p);
} else {
SkASSERT(sl && kRed_Color == sl->fColor);
sl->fColor = kBlack_Color;
rotateRight(p);
}
}
else {
// x has exactly one implicit black child. x cannot be red.
// Proof by contradiction: Assume X is red. Let c0 be x's implicit
// child and c1 be its non-implicit child. c1 must be black because
// red nodes always have two black children. Then the two subtrees
// of x rooted at c0 and c1 will have different black-heights.
SkASSERT(kBlack_Color == x->fColor);
// So we know x is black and has one implicit black child, c0. c1
// must be red, otherwise the subtree at c1 will have a different
// black-height than the subtree rooted at c0.
SkASSERT(kRed_Color == x->fChildren[c]->fColor);
// replace x with c1, making c1 black, preserves all red-black tree
// props.
Node* c1 = x->fChildren[c];
if (x == fFirst) {
SkASSERT(c == kRight_Child);
fFirst = c1;
while (fFirst->fChildren[kLeft_Child]) {
fFirst = fFirst->fChildren[kLeft_Child];
}
SkASSERT(fFirst == SuccessorNode(x));
} else if (x == fLast) {
SkASSERT(c == kLeft_Child);
fLast = c1;
while (fLast->fChildren[kRight_Child]) {
fLast = fLast->fChildren[kRight_Child];
}
SkASSERT(fLast == PredecessorNode(x));
}
c1->fParent = p;
p->fChildren[pc] = c1;
c1->fColor = kBlack_Color;
delete x;
validate();
}
validate();
}
template <typename T, typename C>
void GrRedBlackTree<T,C>::RecursiveDelete(Node* x) {
if (x) {
RecursiveDelete(x->fChildren[kLeft_Child]);
RecursiveDelete(x->fChildren[kRight_Child]);
delete x;
}
}
#ifdef SK_DEBUG
template <typename T, typename C>
void GrRedBlackTree<T,C>::validate() const {
if (fCount) {
SkASSERT(NULL == fRoot->fParent);
SkASSERT(fFirst);
SkASSERT(fLast);
SkASSERT(kBlack_Color == fRoot->fColor);
if (1 == fCount) {
SkASSERT(fFirst == fRoot);
SkASSERT(fLast == fRoot);
SkASSERT(0 == fRoot->fChildren[kLeft_Child]);
SkASSERT(0 == fRoot->fChildren[kRight_Child]);
}
} else {
SkASSERT(NULL == fRoot);
SkASSERT(NULL == fFirst);
SkASSERT(NULL == fLast);
}
#if DEEP_VALIDATE
int bh;
int count = checkNode(fRoot, &bh);
SkASSERT(count == fCount);
#endif
}
template <typename T, typename C>
int GrRedBlackTree<T,C>::checkNode(Node* n, int* bh) const {
if (n) {
SkASSERT(validateChildRelations(n, false));
if (kBlack_Color == n->fColor) {
*bh += 1;
}
SkASSERT(!fComp(n->fItem, fFirst->fItem));
SkASSERT(!fComp(fLast->fItem, n->fItem));
int leftBh = *bh;
int rightBh = *bh;
int cl = checkNode(n->fChildren[kLeft_Child], &leftBh);
int cr = checkNode(n->fChildren[kRight_Child], &rightBh);
SkASSERT(leftBh == rightBh);
*bh = leftBh;
return 1 + cl + cr;
}
return 0;
}
template <typename T, typename C>
bool GrRedBlackTree<T,C>::validateChildRelations(const Node* n,
bool allowRedRed) const {
if (n) {
if (n->fChildren[kLeft_Child] ||
n->fChildren[kRight_Child]) {
if (n->fChildren[kLeft_Child] == n->fChildren[kRight_Child]) {
return validateChildRelationsFailed();
}
if (n->fChildren[kLeft_Child] == n->fParent &&
n->fParent) {
return validateChildRelationsFailed();
}
if (n->fChildren[kRight_Child] == n->fParent &&
n->fParent) {
return validateChildRelationsFailed();
}
if (n->fChildren[kLeft_Child]) {
if (!allowRedRed &&
kRed_Color == n->fChildren[kLeft_Child]->fColor &&
kRed_Color == n->fColor) {
return validateChildRelationsFailed();
}
if (n->fChildren[kLeft_Child]->fParent != n) {
return validateChildRelationsFailed();
}
if (!(fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) ||
(!fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) &&
!fComp(n->fItem, n->fChildren[kLeft_Child]->fItem)))) {
return validateChildRelationsFailed();
}
}
if (n->fChildren[kRight_Child]) {
if (!allowRedRed &&
kRed_Color == n->fChildren[kRight_Child]->fColor &&
kRed_Color == n->fColor) {
return validateChildRelationsFailed();
}
if (n->fChildren[kRight_Child]->fParent != n) {
return validateChildRelationsFailed();
}
if (!(fComp(n->fItem, n->fChildren[kRight_Child]->fItem) ||
(!fComp(n->fChildren[kRight_Child]->fItem, n->fItem) &&
!fComp(n->fItem, n->fChildren[kRight_Child]->fItem)))) {
return validateChildRelationsFailed();
}
}
}
}
return true;
}
#endif
#endif
|