aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/GrProgramDesc.h
blob: cc8a38aa2d54d38745273cbbee5019244e9f427d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/*
 * Copyright 2014 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef GrProgramDesc_DEFINED
#define GrProgramDesc_DEFINED

#include "GrBackendProcessorFactory.h"
#include "GrColor.h"
#include "GrTypesPriv.h"
#include "SkChecksum.h"

class GrGpuGL;

/** This class describes a program to generate. It also serves as a program cache key. Very little
    of this is GL-specific. The GL-specific parts could be factored out into a subclass. */
class GrProgramDesc {
public:
    // Creates an uninitialized key that must be populated by GrGpu::buildProgramDesc()
    GrProgramDesc() {}

    // Returns this as a uint32_t array to be used as a key in the program cache.
    const uint32_t* asKey() const {
        return reinterpret_cast<const uint32_t*>(fKey.begin());
    }

    // Gets the number of bytes in asKey(). It will be a 4-byte aligned value. When comparing two
    // keys the size of either key can be used with memcmp() since the lengths themselves begin the
    // keys and thus the memcmp will exit early if the keys are of different lengths.
    uint32_t keyLength() const { return *this->atOffset<uint32_t, kLengthOffset>(); }

    // Gets the a checksum of the key. Can be used as a hash value for a fast lookup in a cache.
    uint32_t getChecksum() const { return *this->atOffset<uint32_t, kChecksumOffset>(); }

    GrProgramDesc& operator= (const GrProgramDesc& other) {
        size_t keyLength = other.keyLength();
        fKey.reset(keyLength);
        memcpy(fKey.begin(), other.fKey.begin(), keyLength);
        return *this;
    }

    bool operator== (const GrProgramDesc& other) const {
        // The length is masked as a hint to the compiler that the address will be 4 byte aligned.
        return 0 == memcmp(this->asKey(), other.asKey(), this->keyLength() & ~0x3);
    }

    bool operator!= (const GrProgramDesc& other) const {
        return !(*this == other);
    }

    static bool Less(const GrProgramDesc& a, const GrProgramDesc& b) {
        return memcmp(a.asKey(), b.asKey(), a.keyLength() & ~0x3) < 0;
    }


    ///////////////////////////////////////////////////////////////////////////
    /// @name Stage Output Types
    ////

    enum PrimaryOutputType {
        // Modulate color and coverage, write result as the color output.
        kModulate_PrimaryOutputType,
        // Combines the coverage, dst, and color as coverage * color + (1 - coverage) * dst. This
        // can only be set if fDstReadKey is non-zero.
        kCombineWithDst_PrimaryOutputType,

        kPrimaryOutputTypeCnt,
    };

    enum SecondaryOutputType {
        // There is no secondary output
        kNone_SecondaryOutputType,
        // Writes coverage as the secondary output. Only set if dual source blending is supported
        // and primary output is kModulate.
        kCoverage_SecondaryOutputType,
        // Writes coverage * (1 - colorA) as the secondary output. Only set if dual source blending
        // is supported and primary output is kModulate.
        kCoverageISA_SecondaryOutputType,
        // Writes coverage * (1 - colorRGBA) as the secondary output. Only set if dual source
        // blending is supported and primary output is kModulate.
        kCoverageISC_SecondaryOutputType,

        kSecondaryOutputTypeCnt,
    };

    // Specifies where the initial color comes from before the stages are applied.
    enum ColorInput {
        kAllOnes_ColorInput,
        kAttribute_ColorInput,
        kUniform_ColorInput,

        kColorInputCnt
    };

    struct KeyHeader {
        uint8_t                     fDstReadKey;   // set by GrGLShaderBuilder if there
                                                   // are effects that must read the dst.
                                                   // Otherwise, 0.
        uint8_t                     fFragPosKey;   // set by GrGLShaderBuilder if there are
                                                   // effects that read the fragment position.
                                                   // Otherwise, 0.

        SkBool8                     fEmitsPointSize;

        ColorInput                  fColorInput : 8;
        ColorInput                  fCoverageInput : 8;

        PrimaryOutputType           fPrimaryOutputType : 8;
        SecondaryOutputType         fSecondaryOutputType : 8;

        int8_t                      fPositionAttributeIndex;
        int8_t                      fLocalCoordAttributeIndex;
        int8_t                      fColorAttributeIndex;
        int8_t                      fCoverageAttributeIndex;

        SkBool8                     fHasGeometryProcessor;
        int8_t                      fColorEffectCnt;
        int8_t                      fCoverageEffectCnt;
    };


    bool hasGeometryProcessor() const {
        return SkToBool(this->header().fHasGeometryProcessor);
    }

    int numColorEffects() const {
        return this->header().fColorEffectCnt;
    }

    int numCoverageEffects() const {
        return this->header().fCoverageEffectCnt;
    }

    int numTotalEffects() const { return this->numColorEffects() + this->numCoverageEffects(); }

    // This should really only be used internally, base classes should return their own headers
    const KeyHeader& header() const { return *this->atOffset<KeyHeader, kHeaderOffset>(); }

    /** Used to provide effects' keys to their emitCode() function. */
    class ProcKeyProvider {
    public:
        enum ProcessorType {
            kGeometry_ProcessorType,
            kFragment_ProcessorType,
        };

        ProcKeyProvider(const GrProgramDesc* desc, ProcessorType type, int effectOffset)
            : fDesc(desc), fBaseIndex(0), fEffectOffset(effectOffset) {
            switch (type) {
                case kGeometry_ProcessorType:
                    // there can be only one
                    fBaseIndex = 0;
                    break;
                case kFragment_ProcessorType:
                    fBaseIndex = desc->hasGeometryProcessor() ? 1 : 0;
                    break;
            }
        }

        GrProcessorKey get(int index) const {
            const uint16_t* offsetsAndLengths = reinterpret_cast<const uint16_t*>(
                fDesc->fKey.begin() + fEffectOffset);
            // We store two uint16_ts per effect, one for the offset to the effect's key and one for
            // its length. Here we just need the offset.
            uint16_t offset = offsetsAndLengths[2 * (fBaseIndex + index) + 0];
            uint16_t length = offsetsAndLengths[2 * (fBaseIndex + index) + 1];
            // Currently effects must add to the key in units of uint32_t.
            SkASSERT(0 == (length % sizeof(uint32_t)));
            return GrProcessorKey(reinterpret_cast<const uint32_t*>(fDesc->fKey.begin() + offset),
                               length / sizeof(uint32_t));
        }
    private:
        const GrProgramDesc*  fDesc;
        int                   fBaseIndex;
        int                   fEffectOffset;
    };

    // A struct to communicate descriptor information to the program descriptor builder
    struct DescInfo {
        int positionAttributeIndex() const {
            return fFixedFunctionVertexAttribIndices[kPosition_GrVertexAttribBinding];
        }
        int localCoordAttributeIndex() const {
            return fFixedFunctionVertexAttribIndices[kLocalCoord_GrVertexAttribBinding];
        }
        int colorVertexAttributeIndex() const {
            return fFixedFunctionVertexAttribIndices[kColor_GrVertexAttribBinding];
        }
        int coverageVertexAttributeIndex() const {
            return fFixedFunctionVertexAttribIndices[kCoverage_GrVertexAttribBinding];
        }
        bool hasLocalCoordAttribute() const {
            return -1 != fFixedFunctionVertexAttribIndices[kLocalCoord_GrVertexAttribBinding];
        }
        bool hasColorVertexAttribute() const {
            return -1 != fFixedFunctionVertexAttribIndices[kColor_GrVertexAttribBinding];
        }
        bool hasCoverageVertexAttribute() const {
            return -1 != fFixedFunctionVertexAttribIndices[kCoverage_GrVertexAttribBinding];
        }

        int fFixedFunctionVertexAttribIndices[kGrFixedFunctionVertexAttribBindingCnt];

        // These flags are needed to protect the code from creating an unused uniform color/coverage
        // which will cause shader compiler errors.
        bool            fInputColorIsUsed;
        bool            fInputCoverageIsUsed;

        // These flags give aggregated info on the processor stages that are used when building
        // programs.
        bool            fReadsDst;
        bool            fReadsFragPosition;
        bool            fRequiresLocalCoordAttrib;

        // Fragment shader color outputs
        GrProgramDesc::PrimaryOutputType  fPrimaryOutputType : 8;
        GrProgramDesc::SecondaryOutputType  fSecondaryOutputType : 8;
    };

private:
    template<typename T, size_t OFFSET> T* atOffset() {
        return reinterpret_cast<T*>(reinterpret_cast<intptr_t>(fKey.begin()) + OFFSET);
    }

    template<typename T, size_t OFFSET> const T* atOffset() const {
        return reinterpret_cast<const T*>(reinterpret_cast<intptr_t>(fKey.begin()) + OFFSET);
    }

    void finalize() {
        int keyLength = fKey.count();
        SkASSERT(0 == (keyLength % 4));
        *(this->atOffset<uint32_t, GrProgramDesc::kLengthOffset>()) = SkToU32(keyLength);

        uint32_t* checksum = this->atOffset<uint32_t, GrProgramDesc::kChecksumOffset>();
        *checksum = 0;
        *checksum = SkChecksum::Compute(reinterpret_cast<uint32_t*>(fKey.begin()), keyLength);
    }

    // The key, stored in fKey, is composed of four parts:
    // 1. uint32_t for total key length.
    // 2. uint32_t for a checksum.
    // 3. Header struct defined above.  Also room for extensions to the header
    // 4. A Backend specific payload.  Room is preallocated for this
    enum KeyOffsets {
        // Part 1.
        kLengthOffset = 0,
        // Part 2.
        kChecksumOffset = kLengthOffset + sizeof(uint32_t),
        // Part 3.
        kHeaderOffset = kChecksumOffset + sizeof(uint32_t),
        kHeaderSize = SkAlign4(2 * sizeof(KeyHeader)),
    };

    enum {
        kMaxPreallocProcessors = 8,
        kIntsPerProcessor      = 4,    // This is an overestimate of the average effect key size.
        kPreAllocSize = kHeaderOffset + kHeaderSize +
                        kMaxPreallocProcessors * sizeof(uint32_t) * kIntsPerProcessor,
    };

    SkSTArray<kPreAllocSize, uint8_t, true> fKey;

    friend class GrGLProgramDescBuilder;
};

#endif