aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/GrProcessorSet.cpp
blob: 01de53d94d2d8978fd6c97b3dd857620eede8955 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/*
 * Copyright 2017 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "GrProcessorSet.h"
#include "GrAppliedClip.h"
#include "GrCaps.h"
#include "GrXferProcessor.h"
#include "effects/GrPorterDuffXferProcessor.h"

const GrProcessorSet& GrProcessorSet::EmptySet() {
    static const GrProcessorSet gEmpty(GrProcessorSet::Empty::kEmpty);
    return gEmpty;
}

GrProcessorSet::GrProcessorSet(GrPaint&& paint) : fXP(paint.getXPFactory()) {
    fFlags = 0;
    if (paint.numColorFragmentProcessors() <= kMaxColorProcessors) {
        fColorFragmentProcessorCnt = paint.numColorFragmentProcessors();
        fFragmentProcessors.reset(paint.numTotalFragmentProcessors());
        int i = 0;
        for (auto& fp : paint.fColorFragmentProcessors) {
            fFragmentProcessors[i++] = fp.release();
        }
        for (auto& fp : paint.fCoverageFragmentProcessors) {
            fFragmentProcessors[i++] = fp.release();
        }
    } else {
        SkDebugf("Insane number of color fragment processors in paint. Dropping all processors.");
        fColorFragmentProcessorCnt = 0;
    }
}

GrProcessorSet::~GrProcessorSet() {
    for (int i = fFragmentProcessorOffset; i < fFragmentProcessors.count(); ++i) {
        if (this->isFinalized()) {
            fFragmentProcessors[i]->completedExecution();
        } else {
            fFragmentProcessors[i]->unref();
        }
    }
    if (this->isFinalized() && this->xferProcessor()) {
        this->xferProcessor()->unref();
    }
}

bool GrProcessorSet::operator==(const GrProcessorSet& that) const {
    SkASSERT(this->isFinalized());
    SkASSERT(that.isFinalized());
    int fpCount = this->numFragmentProcessors();
    if (((fFlags ^ that.fFlags) & ~kFinalized_Flag) || fpCount != that.numFragmentProcessors() ||
        fColorFragmentProcessorCnt != that.fColorFragmentProcessorCnt) {
        return false;
    }

    for (int i = 0; i < fpCount; ++i) {
        int a = i + fFragmentProcessorOffset;
        int b = i + that.fFragmentProcessorOffset;
        if (!fFragmentProcessors[a]->isEqual(*that.fFragmentProcessors[b])) {
            return false;
        }
    }
    // Most of the time both of these are null
    if (!this->xferProcessor() && !that.xferProcessor()) {
        return true;
    }
    const GrXferProcessor& thisXP = this->xferProcessor()
                                            ? *this->xferProcessor()
                                            : GrPorterDuffXPFactory::SimpleSrcOverXP();
    const GrXferProcessor& thatXP = that.xferProcessor()
                                            ? *that.xferProcessor()
                                            : GrPorterDuffXPFactory::SimpleSrcOverXP();
    return thisXP.isEqual(thatXP);
}

GrProcessorSet::Analysis GrProcessorSet::finalize(const GrProcessorAnalysisColor& colorInput,
                                                  const GrProcessorAnalysisCoverage coverageInput,
                                                  const GrAppliedClip* clip, bool isMixedSamples,
                                                  const GrCaps& caps, GrColor* overrideInputColor) {
    SkASSERT(!this->isFinalized());
    SkASSERT(!fFragmentProcessorOffset);

    GrProcessorSet::Analysis analysis;

    const GrFragmentProcessor* clipFP = clip ? clip->clipCoverageFragmentProcessor() : nullptr;
    GrColorFragmentProcessorAnalysis colorAnalysis(colorInput);
    analysis.fCompatibleWithCoverageAsAlpha = GrProcessorAnalysisCoverage::kLCD != coverageInput;

    const GrFragmentProcessor* const* fps = fFragmentProcessors.get() + fFragmentProcessorOffset;
    colorAnalysis.analyzeProcessors(fps, fColorFragmentProcessorCnt);
    analysis.fCompatibleWithCoverageAsAlpha &=
            colorAnalysis.allProcessorsCompatibleWithCoverageAsAlpha();
    fps += fColorFragmentProcessorCnt;
    int n = this->numCoverageFragmentProcessors();
    bool hasCoverageFP = n > 0;
    bool coverageUsesLocalCoords = false;
    for (int i = 0; i < n; ++i) {
        if (!fps[i]->compatibleWithCoverageAsAlpha()) {
            analysis.fCompatibleWithCoverageAsAlpha = false;
            // Other than tests that exercise atypical behavior we expect all coverage FPs to be
            // compatible with the coverage-as-alpha optimization.
            GrCapsDebugf(&caps, "Coverage FP is not compatible with coverage as alpha.\n");
        }
        coverageUsesLocalCoords |= fps[i]->usesLocalCoords();
    }

    if (clipFP) {
        analysis.fCompatibleWithCoverageAsAlpha &= clipFP->compatibleWithCoverageAsAlpha();
        coverageUsesLocalCoords |= clipFP->usesLocalCoords();
        hasCoverageFP = true;
    }
    int colorFPsToEliminate = colorAnalysis.initialProcessorsToEliminate(overrideInputColor);
    analysis.fInputColorType = static_cast<Analysis::PackedInputColorType>(
            colorFPsToEliminate ? Analysis::kOverridden_InputColorType
                                : Analysis::kOriginal_InputColorType);

    GrProcessorAnalysisCoverage outputCoverage;
    if (GrProcessorAnalysisCoverage::kLCD == coverageInput) {
        outputCoverage = GrProcessorAnalysisCoverage::kLCD;
    } else if (hasCoverageFP || GrProcessorAnalysisCoverage::kSingleChannel == coverageInput) {
        outputCoverage = GrProcessorAnalysisCoverage::kSingleChannel;
    } else {
        outputCoverage = GrProcessorAnalysisCoverage::kNone;
    }

    GrXPFactory::AnalysisProperties props = GrXPFactory::GetAnalysisProperties(
            this->xpFactory(), colorAnalysis.outputColor(), outputCoverage, caps);
    if (!this->numCoverageFragmentProcessors() &&
        GrProcessorAnalysisCoverage::kNone == coverageInput) {
        analysis.fCanCombineOverlappedStencilAndCover = SkToBool(
                props & GrXPFactory::AnalysisProperties::kCanCombineOverlappedStencilAndCover);
    } else {
        // If we have non-clipping coverage processors we don't try to merge stencil steps as its
        // unclear whether it will be correct. We don't expect this to happen in practice.
        analysis.fCanCombineOverlappedStencilAndCover = false;
    }
    analysis.fRequiresDstTexture =
            SkToBool(props & GrXPFactory::AnalysisProperties::kRequiresDstTexture);
    analysis.fCompatibleWithCoverageAsAlpha &=
            SkToBool(props & GrXPFactory::AnalysisProperties::kCompatibleWithAlphaAsCoverage);
    analysis.fRequiresBarrierBetweenOverlappingDraws = SkToBool(
            props & GrXPFactory::AnalysisProperties::kRequiresBarrierBetweenOverlappingDraws);
    if (props & GrXPFactory::AnalysisProperties::kIgnoresInputColor) {
        colorFPsToEliminate = this->numColorFragmentProcessors();
        analysis.fInputColorType =
                static_cast<Analysis::PackedInputColorType>(Analysis::kIgnored_InputColorType);
        analysis.fUsesLocalCoords = coverageUsesLocalCoords;
    } else {
        analysis.fUsesLocalCoords = coverageUsesLocalCoords | colorAnalysis.usesLocalCoords();
    }
    for (int i = 0; i < colorFPsToEliminate; ++i) {
        fFragmentProcessors[i]->unref();
        fFragmentProcessors[i] = nullptr;
    }
    for (int i = colorFPsToEliminate; i < fFragmentProcessors.count(); ++i) {
        fFragmentProcessors[i]->addPendingExecution();
        fFragmentProcessors[i]->unref();
    }
    fFragmentProcessorOffset = colorFPsToEliminate;
    fColorFragmentProcessorCnt -= colorFPsToEliminate;

    auto xp = GrXPFactory::MakeXferProcessor(this->xpFactory(), colorAnalysis.outputColor(),
                                             outputCoverage, isMixedSamples, caps);
    fXP.fProcessor = xp.release();

    fFlags |= kFinalized_Flag;
    analysis.fIsInitialized = true;
    return analysis;
}