aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/GrProcessorSet.cpp
blob: 0601d92db865ba250f41f65fd14f24dd9fe48425 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
/*
 * Copyright 2017 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "GrProcessorSet.h"
#include "GrAppliedClip.h"
#include "GrCaps.h"
#include "GrXferProcessor.h"
#include "SkBlendModePriv.h"
#include "effects/GrPorterDuffXferProcessor.h"

const GrProcessorSet& GrProcessorSet::EmptySet() {
    static GrProcessorSet gEmpty(GrProcessorSet::Empty::kEmpty);
    return gEmpty;
}

GrProcessorSet GrProcessorSet::MakeEmptySet() {
    return GrProcessorSet(GrProcessorSet::Empty::kEmpty);
}

GrProcessorSet::GrProcessorSet(GrPaint&& paint) : fXP(paint.getXPFactory()) {
    fFlags = 0;
    if (paint.numColorFragmentProcessors() <= kMaxColorProcessors) {
        fColorFragmentProcessorCnt = paint.numColorFragmentProcessors();
        fFragmentProcessors.reset(paint.numTotalFragmentProcessors());
        int i = 0;
        for (auto& fp : paint.fColorFragmentProcessors) {
            SkASSERT(fp.get());
            fFragmentProcessors[i++] = std::move(fp);
        }
        for (auto& fp : paint.fCoverageFragmentProcessors) {
            SkASSERT(fp.get());
            fFragmentProcessors[i++] = std::move(fp);
        }
    } else {
        SkDebugf("Insane number of color fragment processors in paint. Dropping all processors.");
        fColorFragmentProcessorCnt = 0;
    }
}

GrProcessorSet::GrProcessorSet(SkBlendMode mode)
        : fXP(SkBlendMode_AsXPFactory(mode))
        , fColorFragmentProcessorCnt(0)
        , fFragmentProcessorOffset(0)
        , fFlags(0) {}

GrProcessorSet::GrProcessorSet(std::unique_ptr<GrFragmentProcessor> colorFP)
        : fFragmentProcessors(1)
        , fXP((const GrXPFactory*)nullptr)
        , fColorFragmentProcessorCnt(1)
        , fFragmentProcessorOffset(0)
        , fFlags(0) {
    SkASSERT(colorFP);
    fFragmentProcessors[0] = std::move(colorFP);
}

GrProcessorSet::GrProcessorSet(GrProcessorSet&& that)
        : fXP(std::move(that.fXP))
        , fColorFragmentProcessorCnt(that.fColorFragmentProcessorCnt)
        , fFragmentProcessorOffset(0)
        , fFlags(that.fFlags) {
    fFragmentProcessors.reset(that.fFragmentProcessors.count() - that.fFragmentProcessorOffset);
    for (int i = 0; i < fFragmentProcessors.count(); ++i) {
        fFragmentProcessors[i] =
                std::move(that.fFragmentProcessors[i + that.fFragmentProcessorOffset]);
    }
    that.fColorFragmentProcessorCnt = 0;
    that.fFragmentProcessors.reset(0);
}

GrProcessorSet::~GrProcessorSet() {
    if (this->isFinalized() && this->xferProcessor()) {
        this->xferProcessor()->unref();
    }
}

SkString dump_fragment_processor_tree(const GrFragmentProcessor* fp, int indentCnt) {
    SkString result;
    SkString indentString;
    for (int i = 0; i < indentCnt; ++i) {
        indentString.append("    ");
    }
    result.appendf("%s%s %s \n", indentString.c_str(), fp->name(), fp->dumpInfo().c_str());
    if (fp->numChildProcessors()) {
        for (int i = 0; i < fp->numChildProcessors(); ++i) {
            result += dump_fragment_processor_tree(&fp->childProcessor(i), indentCnt + 1);
        }
    }
    return result;
}

SkString GrProcessorSet::dumpProcessors() const {
    SkString result;
    if (this->numFragmentProcessors()) {
        if (this->numColorFragmentProcessors()) {
            result.append("Color Fragment Processors:\n");
            for (int i = 0; i < this->numColorFragmentProcessors(); ++i) {
                result += dump_fragment_processor_tree(this->colorFragmentProcessor(i), 1);
            }
        } else {
            result.append("No color fragment processors.\n");
        }
        if (this->numCoverageFragmentProcessors()) {
            result.append("Coverage Fragment Processors:\n");
            for (int i = 0; i < this->numColorFragmentProcessors(); ++i) {
                result += dump_fragment_processor_tree(this->coverageFragmentProcessor(i), 1);
            }
        } else {
            result.append("No coverage fragment processors.\n");
        }
    } else {
        result.append("No color or coverage fragment processors.\n");
    }
    if (this->isFinalized()) {
        result.append("Xfer Processor: ");
        if (this->xferProcessor()) {
            result.appendf("%s\n", this->xferProcessor()->name());
        } else {
            result.append("SrcOver\n");
        }
    } else {
        result.append("XP Factory dumping not implemented.\n");
    }
    return result;
}

bool GrProcessorSet::operator==(const GrProcessorSet& that) const {
    SkASSERT(this->isFinalized());
    SkASSERT(that.isFinalized());
    int fpCount = this->numFragmentProcessors();
    if (((fFlags ^ that.fFlags) & ~kFinalized_Flag) || fpCount != that.numFragmentProcessors() ||
        fColorFragmentProcessorCnt != that.fColorFragmentProcessorCnt) {
        return false;
    }

    for (int i = 0; i < fpCount; ++i) {
        int a = i + fFragmentProcessorOffset;
        int b = i + that.fFragmentProcessorOffset;
        if (!fFragmentProcessors[a]->isEqual(*that.fFragmentProcessors[b])) {
            return false;
        }
    }
    // Most of the time both of these are null
    if (!this->xferProcessor() && !that.xferProcessor()) {
        return true;
    }
    const GrXferProcessor& thisXP = this->xferProcessor()
                                            ? *this->xferProcessor()
                                            : GrPorterDuffXPFactory::SimpleSrcOverXP();
    const GrXferProcessor& thatXP = that.xferProcessor()
                                            ? *that.xferProcessor()
                                            : GrPorterDuffXPFactory::SimpleSrcOverXP();
    return thisXP.isEqual(thatXP);
}

GrProcessorSet::Analysis GrProcessorSet::finalize(const GrProcessorAnalysisColor& colorInput,
                                                  const GrProcessorAnalysisCoverage coverageInput,
                                                  const GrAppliedClip* clip, bool isMixedSamples,
                                                  const GrCaps& caps,
                                                  GrPixelConfigIsClamped dstIsClamped,
                                                  GrColor* overrideInputColor) {
    SkASSERT(!this->isFinalized());
    SkASSERT(!fFragmentProcessorOffset);

    GrProcessorSet::Analysis analysis;
    analysis.fCompatibleWithCoverageAsAlpha = GrProcessorAnalysisCoverage::kLCD != coverageInput;

    const std::unique_ptr<const GrFragmentProcessor>* fps =
            fFragmentProcessors.get() + fFragmentProcessorOffset;
    GrColorFragmentProcessorAnalysis colorAnalysis(
            colorInput, unique_ptr_address_as_pointer_address(fps), fColorFragmentProcessorCnt);
    analysis.fCompatibleWithCoverageAsAlpha &=
            colorAnalysis.allProcessorsCompatibleWithCoverageAsAlpha();
    fps += fColorFragmentProcessorCnt;
    int n = this->numCoverageFragmentProcessors();
    bool hasCoverageFP = n > 0;
    bool coverageUsesLocalCoords = false;
    for (int i = 0; i < n; ++i) {
        if (!fps[i]->compatibleWithCoverageAsAlpha()) {
            analysis.fCompatibleWithCoverageAsAlpha = false;
            // Other than tests that exercise atypical behavior we expect all coverage FPs to be
            // compatible with the coverage-as-alpha optimization.
            GrCapsDebugf(&caps, "Coverage FP is not compatible with coverage as alpha.\n");
        }
        coverageUsesLocalCoords |= fps[i]->usesLocalCoords();
    }
    if (clip) {
        hasCoverageFP = hasCoverageFP || clip->numClipCoverageFragmentProcessors();
        for (int i = 0; i < clip->numClipCoverageFragmentProcessors(); ++i) {
            const GrFragmentProcessor* clipFP = clip->clipCoverageFragmentProcessor(i);
            analysis.fCompatibleWithCoverageAsAlpha &= clipFP->compatibleWithCoverageAsAlpha();
            coverageUsesLocalCoords |= clipFP->usesLocalCoords();
        }
    }
    int colorFPsToEliminate = colorAnalysis.initialProcessorsToEliminate(overrideInputColor);
    analysis.fInputColorType = static_cast<Analysis::PackedInputColorType>(
            colorFPsToEliminate ? Analysis::kOverridden_InputColorType
                                : Analysis::kOriginal_InputColorType);

    GrProcessorAnalysisCoverage outputCoverage;
    if (GrProcessorAnalysisCoverage::kLCD == coverageInput) {
        outputCoverage = GrProcessorAnalysisCoverage::kLCD;
    } else if (hasCoverageFP || GrProcessorAnalysisCoverage::kSingleChannel == coverageInput) {
        outputCoverage = GrProcessorAnalysisCoverage::kSingleChannel;
    } else {
        outputCoverage = GrProcessorAnalysisCoverage::kNone;
    }

    GrXPFactory::AnalysisProperties props = GrXPFactory::GetAnalysisProperties(
            this->xpFactory(), colorAnalysis.outputColor(), outputCoverage, caps, dstIsClamped);
    if (!this->numCoverageFragmentProcessors() &&
        GrProcessorAnalysisCoverage::kNone == coverageInput) {
        analysis.fCanCombineOverlappedStencilAndCover = SkToBool(
                props & GrXPFactory::AnalysisProperties::kCanCombineOverlappedStencilAndCover);
    } else {
        // If we have non-clipping coverage processors we don't try to merge stencil steps as its
        // unclear whether it will be correct. We don't expect this to happen in practice.
        analysis.fCanCombineOverlappedStencilAndCover = false;
    }
    analysis.fRequiresDstTexture =
            SkToBool(props & GrXPFactory::AnalysisProperties::kRequiresDstTexture);
    analysis.fCompatibleWithCoverageAsAlpha &=
            SkToBool(props & GrXPFactory::AnalysisProperties::kCompatibleWithAlphaAsCoverage);
    analysis.fRequiresBarrierBetweenOverlappingDraws = SkToBool(
            props & GrXPFactory::AnalysisProperties::kRequiresBarrierBetweenOverlappingDraws);
    if (props & GrXPFactory::AnalysisProperties::kIgnoresInputColor) {
        colorFPsToEliminate = this->numColorFragmentProcessors();
        analysis.fInputColorType =
                static_cast<Analysis::PackedInputColorType>(Analysis::kIgnored_InputColorType);
        analysis.fUsesLocalCoords = coverageUsesLocalCoords;
    } else {
        analysis.fUsesLocalCoords = coverageUsesLocalCoords | colorAnalysis.usesLocalCoords();
    }
    for (int i = 0; i < colorFPsToEliminate; ++i) {
        fFragmentProcessors[i].reset(nullptr);
    }
    for (int i = colorFPsToEliminate; i < fFragmentProcessors.count(); ++i) {
        fFragmentProcessors[i]->markPendingExecution();
    }
    fFragmentProcessorOffset = colorFPsToEliminate;
    fColorFragmentProcessorCnt -= colorFPsToEliminate;

    auto xp = GrXPFactory::MakeXferProcessor(this->xpFactory(), colorAnalysis.outputColor(),
                                             outputCoverage, isMixedSamples, caps, dstIsClamped);
    fXP.fProcessor = xp.release();

    fFlags |= kFinalized_Flag;
    analysis.fIsInitialized = true;
    return analysis;
}