aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/GrPipelineBuilder.h
blob: 5743c39dc59c2c3609d435b24f517d4a06b00fa7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
/*
 * Copyright 2015 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef GrPipelineBuilder_DEFINED
#define GrPipelineBuilder_DEFINED

#include "GrBatch.h"
#include "GrBlend.h"
#include "GrDrawTargetCaps.h"
#include "GrGeometryProcessor.h"
#include "GrGpuResourceRef.h"
#include "GrFragmentStage.h"
#include "GrProcOptInfo.h"
#include "GrRenderTarget.h"
#include "GrStencil.h"
#include "GrXferProcessor.h"
#include "SkMatrix.h"
#include "effects/GrCoverageSetOpXP.h"
#include "effects/GrDisableColorXP.h"
#include "effects/GrPorterDuffXferProcessor.h"
#include "effects/GrSimpleTextureEffect.h"

class GrDrawTargetCaps;
class GrPaint;
class GrTexture;

class GrPipelineBuilder {
public:
    GrPipelineBuilder();

    GrPipelineBuilder(const GrPipelineBuilder& pipelineBuilder) {
        SkDEBUGCODE(fBlockEffectRemovalCnt = 0;)
        *this = pipelineBuilder;
    }

    virtual ~GrPipelineBuilder();

    /**
     * Initializes the GrPipelineBuilder based on a GrPaint, view matrix and render target. Note
     * that GrPipelineBuilder encompasses more than GrPaint. Aspects of GrPipelineBuilder that have
     * no GrPaint equivalents are set to default values with the exception of vertex attribute state
     * which is unmodified by this function and clipping which will be enabled.
     */
    void setFromPaint(const GrPaint&, GrRenderTarget*);

    /// @}

    /**
     * Depending on features available in the underlying 3D API and the color blend mode requested
     * it may or may not be possible to correctly blend with fractional pixel coverage generated by
     * the fragment shader.
     *
     * This function considers the current GrPipelineBuilder and the draw target's capabilities to
     * determine whether coverage can be handled correctly. This function assumes that the caller
     * intends to specify fractional pixel coverage via a primitive processor but may not have
     * specified it yet.
     */
    bool canUseFracCoveragePrimProc(GrColor color, const GrDrawTargetCaps& caps) const;

    /**
     * This function returns true if the render target destination pixel values will be read for
     * blending during draw.
     */
    bool willBlendWithDst(const GrPrimitiveProcessor*) const;

    ///////////////////////////////////////////////////////////////////////////
    /// @name Effect Stages
    /// Each stage hosts a GrProcessor. The effect produces an output color or coverage in the
    /// fragment shader. Its inputs are the output from the previous stage as well as some variables
    /// available to it in the fragment and vertex shader (e.g. the vertex position, the dst color,
    /// the fragment position, local coordinates).
    ///
    /// The stages are divided into two sets, color-computing and coverage-computing. The final
    /// color stage produces the final pixel color. The coverage-computing stages function exactly
    /// as the color-computing but the output of the final coverage stage is treated as a fractional
    /// pixel coverage rather than as input to the src/dst color blend step.
    ///
    /// The input color to the first color-stage is either the constant color or interpolated
    /// per-vertex colors. The input to the first coverage stage is either a constant coverage
    /// (usually full-coverage) or interpolated per-vertex coverage.
    ///
    /// See the documentation of kCoverageDrawing_StateBit for information about disabling the
    /// the color / coverage distinction.
    ////

    int numColorStages() const { return fColorStages.count(); }
    int numCoverageStages() const { return fCoverageStages.count(); }
    int numFragmentStages() const { return this->numColorStages() + this->numCoverageStages(); }

    const GrXPFactory* getXPFactory() const {
        if (!fXPFactory) {
            fXPFactory.reset(GrPorterDuffXPFactory::Create(SkXfermode::kSrc_Mode));
        }
        return fXPFactory.get();
    }

    const GrFragmentStage& getColorStage(int idx) const { return fColorStages[idx]; }
    const GrFragmentStage& getCoverageStage(int idx) const { return fCoverageStages[idx]; }

    /**
     * Checks whether the xp will need a copy of the destination to correctly blend.
     */
    bool willXPNeedDstCopy(const GrDrawTargetCaps& caps) const;

    /**
     * The xfer processor factory.
     */
    const GrXPFactory* setXPFactory(const GrXPFactory* xpFactory) {
        fXPFactory.reset(SkRef(xpFactory));
        return xpFactory;
    }

    void setPorterDuffXPFactory(SkXfermode::Mode mode) {
        fXPFactory.reset(GrPorterDuffXPFactory::Create(mode));
    }

    void setPorterDuffXPFactory(GrBlendCoeff src, GrBlendCoeff dst) {
        fXPFactory.reset(GrPorterDuffXPFactory::Create(src, dst));
    }

    void setCoverageSetOpXPFactory(SkRegion::Op regionOp, bool invertCoverage = false) {
        fXPFactory.reset(GrCoverageSetOpXPFactory::Create(regionOp, invertCoverage));
    }

    void setDisableColorXPFactory() {
        fXPFactory.reset(GrDisableColorXPFactory::Create());
    }

    const GrFragmentProcessor* addColorProcessor(const GrFragmentProcessor* effect) {
        SkASSERT(effect);
        SkNEW_APPEND_TO_TARRAY(&fColorStages, GrFragmentStage, (effect));
        fColorProcInfoValid = false;
        return effect;
    }

    const GrFragmentProcessor* addCoverageProcessor(const GrFragmentProcessor* effect) {
        SkASSERT(effect);
        SkNEW_APPEND_TO_TARRAY(&fCoverageStages, GrFragmentStage, (effect));
        fCoverageProcInfoValid = false;
        return effect;
    }

    /**
     * Creates a GrSimpleTextureEffect that uses local coords as texture coordinates.
     */
    void addColorTextureProcessor(GrTexture* texture, const SkMatrix& matrix) {
        this->addColorProcessor(GrSimpleTextureEffect::Create(texture, matrix))->unref();
    }

    void addCoverageTextureProcessor(GrTexture* texture, const SkMatrix& matrix) {
        this->addCoverageProcessor(GrSimpleTextureEffect::Create(texture, matrix))->unref();
    }

    void addColorTextureProcessor(GrTexture* texture,
                                  const SkMatrix& matrix,
                                  const GrTextureParams& params) {
        this->addColorProcessor(GrSimpleTextureEffect::Create(texture, matrix, params))->unref();
    }

    void addCoverageTextureProcessor(GrTexture* texture,
                                     const SkMatrix& matrix,
                                     const GrTextureParams& params) {
        this->addCoverageProcessor(GrSimpleTextureEffect::Create(texture, matrix, params))->unref();
    }

    /**
     * When this object is destroyed it will remove any color/coverage effects from the pipeline
     * builder that were added after its constructor.
     *
     * This class has strange behavior around geometry processor. If there is a GP on the
     * GrPipelineBuilder it will assert that the GP is not modified until after the destructor of
     * the ARE. If the GrPipelineBuilder has a NULL GP when the ARE is constructed then it will reset
     * it to null in the destructor.
     */
    class AutoRestoreEffects : public ::SkNoncopyable {
    public:
        AutoRestoreEffects() 
            : fPipelineBuilder(NULL)
            , fColorEffectCnt(0)
            , fCoverageEffectCnt(0) {}

        AutoRestoreEffects(GrPipelineBuilder* ds)
            : fPipelineBuilder(NULL)
            , fColorEffectCnt(0)
            , fCoverageEffectCnt(0) {
            this->set(ds);
        }

        ~AutoRestoreEffects() { this->set(NULL); }

        void set(GrPipelineBuilder* ds);

        bool isSet() const { return SkToBool(fPipelineBuilder); }

    private:
        GrPipelineBuilder*    fPipelineBuilder;
        int             fColorEffectCnt;
        int             fCoverageEffectCnt;
    };

    /**
     * AutoRestoreStencil
     *
     * This simple struct saves and restores the stencil settings
     */
    class AutoRestoreStencil : public ::SkNoncopyable {
    public:
        AutoRestoreStencil() : fPipelineBuilder(NULL) {}

        AutoRestoreStencil(GrPipelineBuilder* ds) : fPipelineBuilder(NULL) { this->set(ds); }

        ~AutoRestoreStencil() { this->set(NULL); }

        void set(GrPipelineBuilder* ds) {
            if (fPipelineBuilder) {
                fPipelineBuilder->setStencil(fStencilSettings);
            }
            fPipelineBuilder = ds;
            if (ds) {
                fStencilSettings = ds->getStencil();
            }
        }

        bool isSet() const { return SkToBool(fPipelineBuilder); }

    private:
        GrPipelineBuilder*  fPipelineBuilder;
        GrStencilSettings   fStencilSettings;
    };

    /// @}

    ///////////////////////////////////////////////////////////////////////////
    /// @name Blending
    ////

    /**
     * Determines whether multiplying the computed per-pixel color by the pixel's fractional
     * coverage before the blend will give the correct final destination color. In general it
     * will not as coverage is applied after blending.
     */
    bool canTweakAlphaForCoverage() const;

    /// @}


    /// @}

    ///////////////////////////////////////////////////////////////////////////
    /// @name Render Target
    ////

    /**
     * Retrieves the currently set render-target.
     *
     * @return    The currently set render target.
     */
    GrRenderTarget* getRenderTarget() const { return fRenderTarget.get(); }

    /**
     * Sets the render-target used at the next drawing call
     *
     * @param target  The render target to set.
     */
    void setRenderTarget(GrRenderTarget* target) { fRenderTarget.reset(SkSafeRef(target)); }

    /// @}

    ///////////////////////////////////////////////////////////////////////////
    /// @name Stencil
    ////

    const GrStencilSettings& getStencil() const { return fStencilSettings; }

    /**
     * Sets the stencil settings to use for the next draw.
     * Changing the clip has the side-effect of possibly zeroing
     * out the client settable stencil bits. So multipass algorithms
     * using stencil should not change the clip between passes.
     * @param settings  the stencil settings to use.
     */
    void setStencil(const GrStencilSettings& settings) { fStencilSettings = settings; }

    /**
     * Shortcut to disable stencil testing and ops.
     */
    void disableStencil() { fStencilSettings.setDisabled(); }

    GrStencilSettings* stencil() { return &fStencilSettings; }

    /// @}

    ///////////////////////////////////////////////////////////////////////////
    /// @name State Flags
    ////

    /**
     *  Flags that affect rendering. Controlled using enable/disableState(). All
     *  default to disabled.
     */
    enum StateBits {
        /**
         * Perform dithering. TODO: Re-evaluate whether we need this bit
         */
        kDither_StateBit        = 0x01,
        /**
         * Perform HW anti-aliasing. This means either HW FSAA, if supported by the render target,
         * or smooth-line rendering if a line primitive is drawn and line smoothing is supported by
         * the 3D API.
         */
        kHWAntialias_StateBit   = 0x02,
        /**
         * Draws will respect the clip, otherwise the clip is ignored.
         */
        kClip_StateBit          = 0x04,

        kLast_StateBit = kClip_StateBit,
    };

    bool isClipState() const { return 0 != (fFlagBits & kClip_StateBit); }
    bool isDither() const { return 0 != (fFlagBits & kDither_StateBit); }
    bool isHWAntialias() const { return 0 != (fFlagBits & kHWAntialias_StateBit); }

    /**
     * Enable render state settings.
     *
     * @param stateBits bitfield of StateBits specifying the states to enable
     */
    void enableState(uint32_t stateBits) { fFlagBits |= stateBits; }

    /**
     * Disable render state settings.
     *
     * @param stateBits bitfield of StateBits specifying the states to disable
     */
    void disableState(uint32_t stateBits) { fFlagBits &= ~(stateBits); }

    /**
     * Enable or disable stateBits based on a boolean.
     *
     * @param stateBits bitfield of StateBits to enable or disable
     * @param enable    if true enable stateBits, otherwise disable
     */
    void setState(uint32_t stateBits, bool enable) {
        if (enable) {
            this->enableState(stateBits);
        } else {
            this->disableState(stateBits);
        }
    }

    /// @}

    ///////////////////////////////////////////////////////////////////////////
    /// @name Face Culling
    ////

    enum DrawFace {
        kInvalid_DrawFace = -1,

        kBoth_DrawFace,
        kCCW_DrawFace,
        kCW_DrawFace,
    };

    /**
     * Gets whether the target is drawing clockwise, counterclockwise,
     * or both faces.
     * @return the current draw face(s).
     */
    DrawFace getDrawFace() const { return fDrawFace; }

    /**
     * Controls whether clockwise, counterclockwise, or both faces are drawn.
     * @param face  the face(s) to draw.
     */
    void setDrawFace(DrawFace face) {
        SkASSERT(kInvalid_DrawFace != face);
        fDrawFace = face;
    }

    /// @}

    ///////////////////////////////////////////////////////////////////////////

    GrPipelineBuilder& operator= (const GrPipelineBuilder& that);

private:
    // Calculating invariant color / coverage information is expensive, so we partially cache the
    // results.
    //
    // canUseFracCoveragePrimProc() - Called in regular skia draw, caches results but only for a
    //                                specific color and coverage.  May be called multiple times
    // willBlendWithDst() - only called by Nvpr, does not cache results
    // GrOptDrawState constructor - never caches results

    // TODO delete when we have Batch
    const GrProcOptInfo& colorProcInfo(const GrPrimitiveProcessor* pp) const {
        this->calcColorInvariantOutput(pp);
        return fColorProcInfo;
    }

    const GrProcOptInfo& coverageProcInfo(const GrPrimitiveProcessor* pp) const {
        this->calcCoverageInvariantOutput(pp);
        return fCoverageProcInfo;
    }

    const GrProcOptInfo& colorProcInfo(const GrBatch* batch) const {
        this->calcColorInvariantOutput(batch);
        return fColorProcInfo;
    }

    const GrProcOptInfo& coverageProcInfo(const GrBatch* batch) const {
        this->calcCoverageInvariantOutput(batch);
        return fCoverageProcInfo;
    }

    /**
     * Primproc variants of the calc functions
     * TODO remove these when batch is everywhere
     */
    void calcColorInvariantOutput(const GrPrimitiveProcessor*) const;
    void calcCoverageInvariantOutput(const GrPrimitiveProcessor*) const;

    /**
     * GrBatch provides the initial seed for these loops based off of its initial geometry data
     */
    void calcColorInvariantOutput(const GrBatch*) const;
    void calcCoverageInvariantOutput(const GrBatch*) const;

    /**
     * If fColorProcInfoValid is false, function calculates the invariant output for the color
     * stages and results are stored in fColorProcInfo.
     */
    void calcColorInvariantOutput(GrColor) const;

    /**
     * If fCoverageProcInfoValid is false, function calculates the invariant output for the coverage
     * stages and results are stored in fCoverageProcInfo.
     */
    void calcCoverageInvariantOutput(GrColor) const;

    // Some of the auto restore objects assume that no effects are removed during their lifetime.
    // This is used to assert that this condition holds.
    SkDEBUGCODE(int fBlockEffectRemovalCnt;)

    typedef SkSTArray<4, GrFragmentStage> FragmentStageArray;

    SkAutoTUnref<GrRenderTarget>            fRenderTarget;
    uint32_t                                fFlagBits;
    GrStencilSettings                       fStencilSettings;
    DrawFace                                fDrawFace;
    mutable SkAutoTUnref<const GrXPFactory> fXPFactory;
    FragmentStageArray                      fColorStages;
    FragmentStageArray                      fCoverageStages;

    mutable GrProcOptInfo fColorProcInfo;
    mutable GrProcOptInfo fCoverageProcInfo;
    mutable bool fColorProcInfoValid;
    mutable bool fCoverageProcInfoValid;
    mutable GrColor fColorCache;
    mutable GrColor fCoverageCache;

    friend class GrPipeline;
};

#endif