1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
|
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrPathUtils_DEFINED
#define GrPathUtils_DEFINED
#include "SkRect.h"
#include "SkPathPriv.h"
#include "SkTArray.h"
class SkMatrix;
/**
* Utilities for evaluating paths.
*/
namespace GrPathUtils {
SkScalar scaleToleranceToSrc(SkScalar devTol,
const SkMatrix& viewM,
const SkRect& pathBounds);
/// Since we divide by tol if we're computing exact worst-case bounds,
/// very small tolerances will be increased to gMinCurveTol.
int worstCasePointCount(const SkPath&,
int* subpaths,
SkScalar tol);
/// Since we divide by tol if we're computing exact worst-case bounds,
/// very small tolerances will be increased to gMinCurveTol.
uint32_t quadraticPointCount(const SkPoint points[], SkScalar tol);
uint32_t generateQuadraticPoints(const SkPoint& p0,
const SkPoint& p1,
const SkPoint& p2,
SkScalar tolSqd,
SkPoint** points,
uint32_t pointsLeft);
/// Since we divide by tol if we're computing exact worst-case bounds,
/// very small tolerances will be increased to gMinCurveTol.
uint32_t cubicPointCount(const SkPoint points[], SkScalar tol);
uint32_t generateCubicPoints(const SkPoint& p0,
const SkPoint& p1,
const SkPoint& p2,
const SkPoint& p3,
SkScalar tolSqd,
SkPoint** points,
uint32_t pointsLeft);
// A 2x3 matrix that goes from the 2d space coordinates to UV space where
// u^2-v = 0 specifies the quad. The matrix is determined by the control
// points of the quadratic.
class QuadUVMatrix {
public:
QuadUVMatrix() {};
// Initialize the matrix from the control pts
QuadUVMatrix(const SkPoint controlPts[3]) { this->set(controlPts); }
void set(const SkPoint controlPts[3]);
/**
* Applies the matrix to vertex positions to compute UV coords. This
* has been templated so that the compiler can easliy unroll the loop
* and reorder to avoid stalling for loads. The assumption is that a
* path renderer will have a small fixed number of vertices that it
* uploads for each quad.
*
* N is the number of vertices.
* STRIDE is the size of each vertex.
* UV_OFFSET is the offset of the UV values within each vertex.
* vertices is a pointer to the first vertex.
*/
template <int N, size_t STRIDE, size_t UV_OFFSET>
void apply(const void* vertices) const {
intptr_t xyPtr = reinterpret_cast<intptr_t>(vertices);
intptr_t uvPtr = reinterpret_cast<intptr_t>(vertices) + UV_OFFSET;
float sx = fM[0];
float kx = fM[1];
float tx = fM[2];
float ky = fM[3];
float sy = fM[4];
float ty = fM[5];
for (int i = 0; i < N; ++i) {
const SkPoint* xy = reinterpret_cast<const SkPoint*>(xyPtr);
SkPoint* uv = reinterpret_cast<SkPoint*>(uvPtr);
uv->fX = sx * xy->fX + kx * xy->fY + tx;
uv->fY = ky * xy->fX + sy * xy->fY + ty;
xyPtr += STRIDE;
uvPtr += STRIDE;
}
}
private:
float fM[6];
};
// Input is 3 control points and a weight for a bezier conic. Calculates the
// three linear functionals (K,L,M) that represent the implicit equation of the
// conic, K^2 - LM.
//
// Output:
// K = (klm[0], klm[1], klm[2])
// L = (klm[3], klm[4], klm[5])
// M = (klm[6], klm[7], klm[8])
void getConicKLM(const SkPoint p[3], const SkScalar weight, SkScalar klm[9]);
// Converts a cubic into a sequence of quads. If working in device space
// use tolScale = 1, otherwise set based on stretchiness of the matrix. The
// result is sets of 3 points in quads.
void convertCubicToQuads(const SkPoint p[4],
SkScalar tolScale,
SkTArray<SkPoint, true>* quads);
// When we approximate a cubic {a,b,c,d} with a quadratic we may have to
// ensure that the new control point lies between the lines ab and cd. The
// convex path renderer requires this. It starts with a path where all the
// control points taken together form a convex polygon. It relies on this
// property and the quadratic approximation of cubics step cannot alter it.
// This variation enforces this constraint. The cubic must be simple and dir
// must specify the orientation of the contour containing the cubic.
void convertCubicToQuadsConstrainToTangents(const SkPoint p[4],
SkScalar tolScale,
SkPathPriv::FirstDirection dir,
SkTArray<SkPoint, true>* quads);
// Chops the cubic bezier passed in by src, at the double point (intersection point)
// if the curve is a cubic loop. If it is a loop, there will be two parametric values for
// the double point: ls and ms. We chop the cubic at these values if they are between 0 and 1.
// Return value:
// Value of 3: ls and ms are both between (0,1), and dst will contain the three cubics,
// dst[0..3], dst[3..6], and dst[6..9] if dst is not nullptr
// Value of 2: Only one of ls and ms are between (0,1), and dst will contain the two cubics,
// dst[0..3] and dst[3..6] if dst is not nullptr
// Value of 1: Neither ls or ms are between (0,1), and dst will contain the one original cubic,
// dst[0..3] if dst is not nullptr
//
// Optional KLM Calculation:
// The function can also return the KLM linear functionals for the chopped cubic implicit form
// of K^3 - LM.
// It will calculate a single set of KLM values that can be shared by all sub cubics, except
// for the subsection that is "the loop" the K and L values need to be negated.
// Output:
// klm: Holds the values for the linear functionals as:
// K = (klm[0], klm[1], klm[2])
// L = (klm[3], klm[4], klm[5])
// M = (klm[6], klm[7], klm[8])
// klm_rev: These values are flags for the corresponding sub cubic saying whether or not
// the K and L values need to be flipped. A value of -1.f means flip K and L and
// a value of 1.f means do nothing.
// *****DO NOT FLIP M, JUST K AND L*****
//
// Notice that the klm lines are calculated in the same space as the input control points.
// If you transform the points the lines will also need to be transformed. This can be done
// by mapping the lines with the inverse-transpose of the matrix used to map the points.
int chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10] = nullptr,
SkScalar klm[9] = nullptr, SkScalar klm_rev[3] = nullptr);
// Input is p which holds the 4 control points of a non-rational cubic Bezier curve.
// Output is the coefficients of the three linear functionals K, L, & M which
// represent the implicit form of the cubic as f(x,y,w) = K^3 - LM. The w term
// will always be 1. The output is stored in the array klm, where the values are:
// K = (klm[0], klm[1], klm[2])
// L = (klm[3], klm[4], klm[5])
// M = (klm[6], klm[7], klm[8])
//
// Notice that the klm lines are calculated in the same space as the input control points.
// If you transform the points the lines will also need to be transformed. This can be done
// by mapping the lines with the inverse-transpose of the matrix used to map the points.
void getCubicKLM(const SkPoint p[4], SkScalar klm[9]);
// When tessellating curved paths into linear segments, this defines the maximum distance
// in screen space which a segment may deviate from the mathmatically correct value.
// Above this value, the segment will be subdivided.
// This value was chosen to approximate the supersampling accuracy of the raster path (16
// samples, or one quarter pixel).
static const SkScalar kDefaultTolerance = SkDoubleToScalar(0.25);
};
#endif
|