aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/GrPathUtils.cpp
blob: 74a53e9e098c1eb244aa69e5e6c90a19d4e2bf01 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "GrPathUtils.h"

#include "GrTypes.h"
#include "SkMathPriv.h"
#include "SkPointPriv.h"

static const SkScalar gMinCurveTol = 0.0001f;

SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
                                          const SkMatrix& viewM,
                                          const SkRect& pathBounds) {
    // In order to tesselate the path we get a bound on how much the matrix can
    // scale when mapping to screen coordinates.
    SkScalar stretch = viewM.getMaxScale();

    if (stretch < 0) {
        // take worst case mapRadius amoung four corners.
        // (less than perfect)
        for (int i = 0; i < 4; ++i) {
            SkMatrix mat;
            mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
                             (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
            mat.postConcat(viewM);
            stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1));
        }
    }
    SkScalar srcTol = devTol / stretch;
    if (srcTol < gMinCurveTol) {
        srcTol = gMinCurveTol;
    }
    return srcTol;
}

uint32_t GrPathUtils::quadraticPointCount(const SkPoint points[], SkScalar tol) {
    // You should have called scaleToleranceToSrc, which guarantees this
    SkASSERT(tol >= gMinCurveTol);

    SkScalar d = SkPointPriv::DistanceToLineSegmentBetween(points[1], points[0], points[2]);
    if (!SkScalarIsFinite(d)) {
        return kMaxPointsPerCurve;
    } else if (d <= tol) {
        return 1;
    } else {
        // Each time we subdivide, d should be cut in 4. So we need to
        // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
        // points.
        // 2^(log4(x)) = sqrt(x);
        SkScalar divSqrt = SkScalarSqrt(d / tol);
        if (((SkScalar)SK_MaxS32) <= divSqrt) {
            return kMaxPointsPerCurve;
        } else {
            int temp = SkScalarCeilToInt(divSqrt);
            int pow2 = GrNextPow2(temp);
            // Because of NaNs & INFs we can wind up with a degenerate temp
            // such that pow2 comes out negative. Also, our point generator
            // will always output at least one pt.
            if (pow2 < 1) {
                pow2 = 1;
            }
            return SkTMin(pow2, kMaxPointsPerCurve);
        }
    }
}

uint32_t GrPathUtils::generateQuadraticPoints(const SkPoint& p0,
                                              const SkPoint& p1,
                                              const SkPoint& p2,
                                              SkScalar tolSqd,
                                              SkPoint** points,
                                              uint32_t pointsLeft) {
    if (pointsLeft < 2 ||
        (SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p2)) < tolSqd) {
        (*points)[0] = p2;
        *points += 1;
        return 1;
    }

    SkPoint q[] = {
        { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
        { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
    };
    SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };

    pointsLeft >>= 1;
    uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
    uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
    return a + b;
}

uint32_t GrPathUtils::cubicPointCount(const SkPoint points[],
                                           SkScalar tol) {
    // You should have called scaleToleranceToSrc, which guarantees this
    SkASSERT(tol >= gMinCurveTol);

    SkScalar d = SkTMax(
        SkPointPriv::DistanceToLineSegmentBetweenSqd(points[1], points[0], points[3]),
        SkPointPriv::DistanceToLineSegmentBetweenSqd(points[2], points[0], points[3]));
    d = SkScalarSqrt(d);
    if (!SkScalarIsFinite(d)) {
        return kMaxPointsPerCurve;
    } else if (d <= tol) {
        return 1;
    } else {
        SkScalar divSqrt = SkScalarSqrt(d / tol);
        if (((SkScalar)SK_MaxS32) <= divSqrt) {
            return kMaxPointsPerCurve;
        } else {
            int temp = SkScalarCeilToInt(SkScalarSqrt(d / tol));
            int pow2 = GrNextPow2(temp);
            // Because of NaNs & INFs we can wind up with a degenerate temp
            // such that pow2 comes out negative. Also, our point generator
            // will always output at least one pt.
            if (pow2 < 1) {
                pow2 = 1;
            }
            return SkTMin(pow2, kMaxPointsPerCurve);
        }
    }
}

uint32_t GrPathUtils::generateCubicPoints(const SkPoint& p0,
                                          const SkPoint& p1,
                                          const SkPoint& p2,
                                          const SkPoint& p3,
                                          SkScalar tolSqd,
                                          SkPoint** points,
                                          uint32_t pointsLeft) {
    if (pointsLeft < 2 ||
        (SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p3) < tolSqd &&
         SkPointPriv::DistanceToLineSegmentBetweenSqd(p2, p0, p3) < tolSqd)) {
        (*points)[0] = p3;
        *points += 1;
        return 1;
    }
    SkPoint q[] = {
        { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
        { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
        { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
    };
    SkPoint r[] = {
        { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
        { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
    };
    SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
    pointsLeft >>= 1;
    uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
    uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
    return a + b;
}

int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths, SkScalar tol) {
    // You should have called scaleToleranceToSrc, which guarantees this
    SkASSERT(tol >= gMinCurveTol);

    int pointCount = 0;
    *subpaths = 1;

    bool first = true;

    SkPath::Iter iter(path, false);
    SkPath::Verb verb;

    SkPoint pts[4];
    while ((verb = iter.next(pts, false)) != SkPath::kDone_Verb) {

        switch (verb) {
            case SkPath::kLine_Verb:
                pointCount += 1;
                break;
            case SkPath::kConic_Verb: {
                SkScalar weight = iter.conicWeight();
                SkAutoConicToQuads converter;
                const SkPoint* quadPts = converter.computeQuads(pts, weight, tol);
                for (int i = 0; i < converter.countQuads(); ++i) {
                    pointCount += quadraticPointCount(quadPts + 2*i, tol);
                }
            }
            case SkPath::kQuad_Verb:
                pointCount += quadraticPointCount(pts, tol);
                break;
            case SkPath::kCubic_Verb:
                pointCount += cubicPointCount(pts, tol);
                break;
            case SkPath::kMove_Verb:
                pointCount += 1;
                if (!first) {
                    ++(*subpaths);
                }
                break;
            default:
                break;
        }
        first = false;
    }
    return pointCount;
}

void GrPathUtils::QuadUVMatrix::set(const SkPoint qPts[3]) {
    SkMatrix m;
    // We want M such that M * xy_pt = uv_pt
    // We know M * control_pts = [0  1/2 1]
    //                           [0  0   1]
    //                           [1  1   1]
    // And control_pts = [x0 x1 x2]
    //                   [y0 y1 y2]
    //                   [1  1  1 ]
    // We invert the control pt matrix and post concat to both sides to get M.
    // Using the known form of the control point matrix and the result, we can
    // optimize and improve precision.

    double x0 = qPts[0].fX;
    double y0 = qPts[0].fY;
    double x1 = qPts[1].fX;
    double y1 = qPts[1].fY;
    double x2 = qPts[2].fX;
    double y2 = qPts[2].fY;
    double det = x0*y1 - y0*x1 + x2*y0 - y2*x0 + x1*y2 - y1*x2;

    if (!sk_float_isfinite(det)
        || SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) {
        // The quad is degenerate. Hopefully this is rare. Find the pts that are
        // farthest apart to compute a line (unless it is really a pt).
        SkScalar maxD = SkPointPriv::DistanceToSqd(qPts[0], qPts[1]);
        int maxEdge = 0;
        SkScalar d = SkPointPriv::DistanceToSqd(qPts[1], qPts[2]);
        if (d > maxD) {
            maxD = d;
            maxEdge = 1;
        }
        d = SkPointPriv::DistanceToSqd(qPts[2], qPts[0]);
        if (d > maxD) {
            maxD = d;
            maxEdge = 2;
        }
        // We could have a tolerance here, not sure if it would improve anything
        if (maxD > 0) {
            // Set the matrix to give (u = 0, v = distance_to_line)
            SkVector lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
            // when looking from the point 0 down the line we want positive
            // distances to be to the left. This matches the non-degenerate
            // case.
            SkPointPriv::SetOrthog(&lineVec, lineVec, SkPointPriv::kLeft_Side);
            // first row
            fM[0] = 0;
            fM[1] = 0;
            fM[2] = 0;
            // second row
            fM[3] = lineVec.fX;
            fM[4] = lineVec.fY;
            fM[5] = -lineVec.dot(qPts[maxEdge]);
        } else {
            // It's a point. It should cover zero area. Just set the matrix such
            // that (u, v) will always be far away from the quad.
            fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
            fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
        }
    } else {
        double scale = 1.0/det;

        // compute adjugate matrix
        double a2, a3, a4, a5, a6, a7, a8;
        a2 = x1*y2-x2*y1;

        a3 = y2-y0;
        a4 = x0-x2;
        a5 = x2*y0-x0*y2;

        a6 = y0-y1;
        a7 = x1-x0;
        a8 = x0*y1-x1*y0;

        // this performs the uv_pts*adjugate(control_pts) multiply,
        // then does the scale by 1/det afterwards to improve precision
        m[SkMatrix::kMScaleX] = (float)((0.5*a3 + a6)*scale);
        m[SkMatrix::kMSkewX]  = (float)((0.5*a4 + a7)*scale);
        m[SkMatrix::kMTransX] = (float)((0.5*a5 + a8)*scale);

        m[SkMatrix::kMSkewY]  = (float)(a6*scale);
        m[SkMatrix::kMScaleY] = (float)(a7*scale);
        m[SkMatrix::kMTransY] = (float)(a8*scale);

        // kMPersp0 & kMPersp1 should algebraically be zero
        m[SkMatrix::kMPersp0] = 0.0f;
        m[SkMatrix::kMPersp1] = 0.0f;
        m[SkMatrix::kMPersp2] = (float)((a2 + a5 + a8)*scale);

        // It may not be normalized to have 1.0 in the bottom right
        float m33 = m.get(SkMatrix::kMPersp2);
        if (1.f != m33) {
            m33 = 1.f / m33;
            fM[0] = m33 * m.get(SkMatrix::kMScaleX);
            fM[1] = m33 * m.get(SkMatrix::kMSkewX);
            fM[2] = m33 * m.get(SkMatrix::kMTransX);
            fM[3] = m33 * m.get(SkMatrix::kMSkewY);
            fM[4] = m33 * m.get(SkMatrix::kMScaleY);
            fM[5] = m33 * m.get(SkMatrix::kMTransY);
        } else {
            fM[0] = m.get(SkMatrix::kMScaleX);
            fM[1] = m.get(SkMatrix::kMSkewX);
            fM[2] = m.get(SkMatrix::kMTransX);
            fM[3] = m.get(SkMatrix::kMSkewY);
            fM[4] = m.get(SkMatrix::kMScaleY);
            fM[5] = m.get(SkMatrix::kMTransY);
        }
    }
}

////////////////////////////////////////////////////////////////////////////////

// k = (y2 - y0, x0 - x2, x2*y0 - x0*y2)
// l = (y1 - y0, x0 - x1, x1*y0 - x0*y1) * 2*w
// m = (y2 - y1, x1 - x2, x2*y1 - x1*y2) * 2*w
void GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkMatrix* out) {
    SkMatrix& klm = *out;
    const SkScalar w2 = 2.f * weight;
    klm[0] = p[2].fY - p[0].fY;
    klm[1] = p[0].fX - p[2].fX;
    klm[2] = p[2].fX * p[0].fY - p[0].fX * p[2].fY;

    klm[3] = w2 * (p[1].fY - p[0].fY);
    klm[4] = w2 * (p[0].fX - p[1].fX);
    klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY);

    klm[6] = w2 * (p[2].fY - p[1].fY);
    klm[7] = w2 * (p[1].fX - p[2].fX);
    klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY);

    // scale the max absolute value of coeffs to 10
    SkScalar scale = 0.f;
    for (int i = 0; i < 9; ++i) {
       scale = SkMaxScalar(scale, SkScalarAbs(klm[i]));
    }
    SkASSERT(scale > 0.f);
    scale = 10.f / scale;
    for (int i = 0; i < 9; ++i) {
        klm[i] *= scale;
    }
}

////////////////////////////////////////////////////////////////////////////////

namespace {

// a is the first control point of the cubic.
// ab is the vector from a to the second control point.
// dc is the vector from the fourth to the third control point.
// d is the fourth control point.
// p is the candidate quadratic control point.
// this assumes that the cubic doesn't inflect and is simple
bool is_point_within_cubic_tangents(const SkPoint& a,
                                    const SkVector& ab,
                                    const SkVector& dc,
                                    const SkPoint& d,
                                    SkPathPriv::FirstDirection dir,
                                    const SkPoint p) {
    SkVector ap = p - a;
    SkScalar apXab = ap.cross(ab);
    if (SkPathPriv::kCW_FirstDirection == dir) {
        if (apXab > 0) {
            return false;
        }
    } else {
        SkASSERT(SkPathPriv::kCCW_FirstDirection == dir);
        if (apXab < 0) {
            return false;
        }
    }

    SkVector dp = p - d;
    SkScalar dpXdc = dp.cross(dc);
    if (SkPathPriv::kCW_FirstDirection == dir) {
        if (dpXdc < 0) {
            return false;
        }
    } else {
        SkASSERT(SkPathPriv::kCCW_FirstDirection == dir);
        if (dpXdc > 0) {
            return false;
        }
    }
    return true;
}

void convert_noninflect_cubic_to_quads(const SkPoint p[4],
                                       SkScalar toleranceSqd,
                                       bool constrainWithinTangents,
                                       SkPathPriv::FirstDirection dir,
                                       SkTArray<SkPoint, true>* quads,
                                       int sublevel = 0) {

    // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
    // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].

    SkVector ab = p[1] - p[0];
    SkVector dc = p[2] - p[3];

    if (SkPointPriv::LengthSqd(ab) < SK_ScalarNearlyZero) {
        if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
            SkPoint* degQuad = quads->push_back_n(3);
            degQuad[0] = p[0];
            degQuad[1] = p[0];
            degQuad[2] = p[3];
            return;
        }
        ab = p[2] - p[0];
    }
    if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
        dc = p[1] - p[3];
    }

    // When the ab and cd tangents are degenerate or nearly parallel with vector from d to a the
    // constraint that the quad point falls between the tangents becomes hard to enforce and we are
    // likely to hit the max subdivision count. However, in this case the cubic is approaching a
    // line and the accuracy of the quad point isn't so important. We check if the two middle cubic
    // control points are very close to the baseline vector. If so then we just pick quadratic
    // points on the control polygon.

    if (constrainWithinTangents) {
        SkVector da = p[0] - p[3];
        bool doQuads = SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero ||
                       SkPointPriv::LengthSqd(ab) < SK_ScalarNearlyZero;
        if (!doQuads) {
            SkScalar invDALengthSqd = SkPointPriv::LengthSqd(da);
            if (invDALengthSqd > SK_ScalarNearlyZero) {
                invDALengthSqd = SkScalarInvert(invDALengthSqd);
                // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
                // same goes for point c using vector cd.
                SkScalar detABSqd = ab.cross(da);
                detABSqd = SkScalarSquare(detABSqd);
                SkScalar detDCSqd = dc.cross(da);
                detDCSqd = SkScalarSquare(detDCSqd);
                if (detABSqd * invDALengthSqd < toleranceSqd &&
                    detDCSqd * invDALengthSqd < toleranceSqd)
                {
                    doQuads = true;
                }
            }
        }
        if (doQuads) {
            SkPoint b = p[0] + ab;
            SkPoint c = p[3] + dc;
            SkPoint mid = b + c;
            mid.scale(SK_ScalarHalf);
            // Insert two quadratics to cover the case when ab points away from d and/or dc
            // points away from a.
            if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) {
                SkPoint* qpts = quads->push_back_n(6);
                qpts[0] = p[0];
                qpts[1] = b;
                qpts[2] = mid;
                qpts[3] = mid;
                qpts[4] = c;
                qpts[5] = p[3];
            } else {
                SkPoint* qpts = quads->push_back_n(3);
                qpts[0] = p[0];
                qpts[1] = mid;
                qpts[2] = p[3];
            }
            return;
        }
    }

    static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
    static const int kMaxSubdivs = 10;

    ab.scale(kLengthScale);
    dc.scale(kLengthScale);

    // e0 and e1 are extrapolations along vectors ab and dc.
    SkVector c0 = p[0];
    c0 += ab;
    SkVector c1 = p[3];
    c1 += dc;

    SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : SkPointPriv::DistanceToSqd(c0, c1);
    if (dSqd < toleranceSqd) {
        SkPoint cAvg = c0;
        cAvg += c1;
        cAvg.scale(SK_ScalarHalf);

        bool subdivide = false;

        if (constrainWithinTangents &&
            !is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
            // choose a new cAvg that is the intersection of the two tangent lines.
            SkPointPriv::SetOrthog(&ab, ab);
            SkScalar z0 = -ab.dot(p[0]);
            SkPointPriv::SetOrthog(&dc, dc);
            SkScalar z1 = -dc.dot(p[3]);
            cAvg.fX = ab.fY * z1 - z0 * dc.fY;
            cAvg.fY = z0 * dc.fX - ab.fX * z1;
            SkScalar z = ab.fX * dc.fY - ab.fY * dc.fX;
            z = SkScalarInvert(z);
            cAvg.fX *= z;
            cAvg.fY *= z;
            if (sublevel <= kMaxSubdivs) {
                SkScalar d0Sqd = SkPointPriv::DistanceToSqd(c0, cAvg);
                SkScalar d1Sqd = SkPointPriv::DistanceToSqd(c1, cAvg);
                // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
                // the distances and tolerance can't be negative.
                // (d0 + d1)^2 > toleranceSqd
                // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
                SkScalar d0d1 = SkScalarSqrt(d0Sqd * d1Sqd);
                subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
            }
        }
        if (!subdivide) {
            SkPoint* pts = quads->push_back_n(3);
            pts[0] = p[0];
            pts[1] = cAvg;
            pts[2] = p[3];
            return;
        }
    }
    SkPoint choppedPts[7];
    SkChopCubicAtHalf(p, choppedPts);
    convert_noninflect_cubic_to_quads(choppedPts + 0,
                                      toleranceSqd,
                                      constrainWithinTangents,
                                      dir,
                                      quads,
                                      sublevel + 1);
    convert_noninflect_cubic_to_quads(choppedPts + 3,
                                      toleranceSqd,
                                      constrainWithinTangents,
                                      dir,
                                      quads,
                                      sublevel + 1);
}
}

void GrPathUtils::convertCubicToQuads(const SkPoint p[4],
                                      SkScalar tolScale,
                                      SkTArray<SkPoint, true>* quads) {
    if (!p[0].isFinite() || !p[1].isFinite() || !p[2].isFinite() || !p[3].isFinite()) {
        return;
    }
    SkPoint chopped[10];
    int count = SkChopCubicAtInflections(p, chopped);

    const SkScalar tolSqd = SkScalarSquare(tolScale);

    for (int i = 0; i < count; ++i) {
        SkPoint* cubic = chopped + 3*i;
        // The direction param is ignored if the third param is false.
        convert_noninflect_cubic_to_quads(cubic, tolSqd, false,
                                          SkPathPriv::kCCW_FirstDirection, quads);
    }
}

void GrPathUtils::convertCubicToQuadsConstrainToTangents(const SkPoint p[4],
                                                         SkScalar tolScale,
                                                         SkPathPriv::FirstDirection dir,
                                                         SkTArray<SkPoint, true>* quads) {
    if (!p[0].isFinite() || !p[1].isFinite() || !p[2].isFinite() || !p[3].isFinite()) {
        return;
    }
    SkPoint chopped[10];
    int count = SkChopCubicAtInflections(p, chopped);

    const SkScalar tolSqd = SkScalarSquare(tolScale);

    for (int i = 0; i < count; ++i) {
        SkPoint* cubic = chopped + 3*i;
        convert_noninflect_cubic_to_quads(cubic, tolSqd, true, dir, quads);
    }
}

////////////////////////////////////////////////////////////////////////////////

using ExcludedTerm = GrPathUtils::ExcludedTerm;

ExcludedTerm GrPathUtils::calcCubicInverseTransposePowerBasisMatrix(const SkPoint p[4],
                                                                    SkMatrix* out) {
    GR_STATIC_ASSERT(SK_SCALAR_IS_FLOAT);

    // First convert the bezier coordinates p[0..3] to power basis coefficients X,Y(,W=[0 0 0 1]).
    // M3 is the matrix that does this conversion. The homogeneous equation for the cubic becomes:
    //
    //                                     | X   Y   0 |
    // C(t,s) = [t^3  t^2*s  t*s^2  s^3] * | .   .   0 |
    //                                     | .   .   0 |
    //                                     | .   .   1 |
    //
    const Sk4f M3[3] = {Sk4f(-1, 3, -3, 1),
                        Sk4f(3, -6, 3, 0),
                        Sk4f(-3, 3, 0, 0)};
    // 4th col of M3 =  Sk4f(1, 0, 0, 0)};
    Sk4f X(p[3].x(), 0, 0, 0);
    Sk4f Y(p[3].y(), 0, 0, 0);
    for (int i = 2; i >= 0; --i) {
        X += M3[i] * p[i].x();
        Y += M3[i] * p[i].y();
    }

    // The matrix is 3x4. In order to invert it, we first need to make it square by throwing out one
    // of the middle two rows. We toss the row that leaves us with the largest absolute determinant.
    // Since the right column will be [0 0 1], the respective determinants reduce to x0*y2 - y0*x2
    // and x0*y1 - y0*x1.
    SkScalar dets[4];
    Sk4f D = SkNx_shuffle<0,0,2,1>(X) * SkNx_shuffle<2,1,0,0>(Y);
    D -= SkNx_shuffle<2,3,0,1>(D);
    D.store(dets);
    ExcludedTerm skipTerm = SkScalarAbs(dets[0]) > SkScalarAbs(dets[1]) ?
                            ExcludedTerm::kQuadraticTerm : ExcludedTerm::kLinearTerm;
    SkScalar det = dets[ExcludedTerm::kQuadraticTerm == skipTerm ? 0 : 1];
    if (0 == det) {
        return ExcludedTerm::kNonInvertible;
    }
    SkScalar rdet = 1 / det;

    // Compute the inverse-transpose of the power basis matrix with the 'skipRow'th row removed.
    // Since W=[0 0 0 1], it follows that our corresponding solution will be equal to:
    //
    //             |  y1  -x1   x1*y2 - y1*x2 |
    //     1/det * | -y0   x0  -x0*y2 + y0*x2 |
    //             |   0    0             det |
    //
    SkScalar x[4], y[4], z[4];
    X.store(x);
    Y.store(y);
    (X * SkNx_shuffle<3,3,3,3>(Y) - Y * SkNx_shuffle<3,3,3,3>(X)).store(z);

    int middleRow = ExcludedTerm::kQuadraticTerm == skipTerm ? 2 : 1;
    out->setAll( y[middleRow] * rdet, -x[middleRow] * rdet,  z[middleRow] * rdet,
                        -y[0] * rdet,          x[0] * rdet,         -z[0] * rdet,
                                   0,                    0,                    1);

    return skipTerm;
}

inline static void calc_serp_kcoeffs(SkScalar tl, SkScalar sl, SkScalar tm, SkScalar sm,
                                     ExcludedTerm skipTerm, SkScalar outCoeffs[3]) {
    SkASSERT(ExcludedTerm::kQuadraticTerm == skipTerm || ExcludedTerm::kLinearTerm == skipTerm);
    outCoeffs[0] = 0;
    outCoeffs[1] = (ExcludedTerm::kLinearTerm == skipTerm) ? sl*sm : -tl*sm - tm*sl;
    outCoeffs[2] = tl*tm;
}

inline static void calc_serp_lmcoeffs(SkScalar t, SkScalar s, ExcludedTerm skipTerm,
                                      SkScalar outCoeffs[3]) {
    SkASSERT(ExcludedTerm::kQuadraticTerm == skipTerm || ExcludedTerm::kLinearTerm == skipTerm);
    outCoeffs[0] = -s*s*s;
    outCoeffs[1] = (ExcludedTerm::kLinearTerm == skipTerm) ? 3*s*s*t : -3*s*t*t;
    outCoeffs[2] = t*t*t;
}

inline static void calc_loop_kcoeffs(SkScalar td, SkScalar sd, SkScalar te, SkScalar se,
                                     SkScalar tdse, SkScalar tesd, ExcludedTerm skipTerm,
                                     SkScalar outCoeffs[3]) {
    SkASSERT(ExcludedTerm::kQuadraticTerm == skipTerm || ExcludedTerm::kLinearTerm == skipTerm);
    outCoeffs[0] = 0;
    outCoeffs[1] = (ExcludedTerm::kLinearTerm == skipTerm) ? sd*se : -tdse - tesd;
    outCoeffs[2] = td*te;
}

inline static void calc_loop_lmcoeffs(SkScalar t2, SkScalar s2, SkScalar t1, SkScalar s1,
                                      SkScalar t2s1, SkScalar t1s2, ExcludedTerm skipTerm,
                                      SkScalar outCoeffs[3]) {
    SkASSERT(ExcludedTerm::kQuadraticTerm == skipTerm || ExcludedTerm::kLinearTerm == skipTerm);
    outCoeffs[0] = -s2*s2*s1;
    outCoeffs[1] = (ExcludedTerm::kLinearTerm == skipTerm) ? s2 * (2*t2s1 + t1s2)
                                                           : -t2 * (t2s1 + 2*t1s2);
    outCoeffs[2] = t2*t2*t1;
}

// For the case when a cubic bezier is actually a quadratic. We duplicate k in l so that the
// implicit becomes:
//
//     k^3 - l*m == k^3 - l*k == k * (k^2 - l)
//
// In the quadratic case we can simply assign fixed values at each control point:
//
//     | ..K.. |     | pts[0]  pts[1]  pts[2]  pts[3] |      | 0   1/3  2/3  1 |
//     | ..L.. |  *  |   .       .       .       .    |  ==  | 0     0  1/3  1 |
//     | ..K.. |     |   1       1       1       1    |      | 0   1/3  2/3  1 |
//
static void calc_quadratic_klm(const SkPoint pts[4], double d3, SkMatrix* klm) {
    SkMatrix klmAtPts;
    klmAtPts.setAll(0,  1.f/3,  1,
                    0,      0,  1,
                    0,  1.f/3,  1);

    SkMatrix inversePts;
    inversePts.setAll(pts[0].x(),  pts[1].x(),  pts[3].x(),
                      pts[0].y(),  pts[1].y(),  pts[3].y(),
                               1,           1,           1);
    SkAssertResult(inversePts.invert(&inversePts));

    klm->setConcat(klmAtPts, inversePts);

    // If d3 > 0 we need to flip the orientation of our curve
    // This is done by negating the k and l values
    if (d3 > 0) {
        klm->postScale(-1, -1);
    }
}

// For the case when a cubic bezier is actually a line. We set K=0, L=1, M=-line, which results in
// the following implicit:
//
//     k^3 - l*m == 0^3 - 1*(-line) == -(-line) == line
//
static void calc_line_klm(const SkPoint pts[4], SkMatrix* klm) {
    SkScalar ny = pts[0].x() - pts[3].x();
    SkScalar nx = pts[3].y() - pts[0].y();
    SkScalar k = nx * pts[0].x() + ny * pts[0].y();
    klm->setAll(  0,   0, 0,
                  0,   0, 1,
                -nx, -ny, k);
}

SkCubicType GrPathUtils::getCubicKLM(const SkPoint src[4], SkMatrix* klm, double tt[2],
                                     double ss[2]) {
    double d[4];
    SkCubicType type = SkClassifyCubic(src, tt, ss, d);

    if (SkCubicType::kLineOrPoint == type) {
        calc_line_klm(src, klm);
        return SkCubicType::kLineOrPoint;
    }

    if (SkCubicType::kQuadratic == type) {
        calc_quadratic_klm(src, d[3], klm);
        return SkCubicType::kQuadratic;
    }

    SkMatrix CIT;
    ExcludedTerm skipTerm = calcCubicInverseTransposePowerBasisMatrix(src, &CIT);
    if (ExcludedTerm::kNonInvertible == skipTerm) {
        // This could technically also happen if the curve were quadratic, but SkClassifyCubic
        // should have detected that case already with tolerance.
        calc_line_klm(src, klm);
        return SkCubicType::kLineOrPoint;
    }

    const SkScalar t0 = static_cast<SkScalar>(tt[0]), t1 = static_cast<SkScalar>(tt[1]),
                   s0 = static_cast<SkScalar>(ss[0]), s1 = static_cast<SkScalar>(ss[1]);

    SkMatrix klmCoeffs;
    switch (type) {
        case SkCubicType::kCuspAtInfinity:
            SkASSERT(1 == t1 && 0 == s1); // Infinity.
            // fallthru.
        case SkCubicType::kLocalCusp:
        case SkCubicType::kSerpentine:
            calc_serp_kcoeffs(t0, s0, t1, s1, skipTerm, &klmCoeffs[0]);
            calc_serp_lmcoeffs(t0, s0, skipTerm, &klmCoeffs[3]);
            calc_serp_lmcoeffs(t1, s1, skipTerm, &klmCoeffs[6]);
            break;
        case SkCubicType::kLoop: {
            const SkScalar tdse = t0 * s1;
            const SkScalar tesd = t1 * s0;
            calc_loop_kcoeffs(t0, s0, t1, s1, tdse, tesd, skipTerm, &klmCoeffs[0]);
            calc_loop_lmcoeffs(t0, s0, t1, s1, tdse, tesd, skipTerm, &klmCoeffs[3]);
            calc_loop_lmcoeffs(t1, s1, t0, s0, tesd, tdse, skipTerm, &klmCoeffs[6]);
            break;
        }
        default:
            SK_ABORT("Unexpected cubic type.");
            break;
    }

    klm->setConcat(klmCoeffs, CIT);
    return type;
}

int GrPathUtils::chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkMatrix* klm,
                                             int* loopIndex) {
    SkSTArray<2, SkScalar> chops;
    *loopIndex = -1;

    double t[2], s[2];
    if (SkCubicType::kLoop == GrPathUtils::getCubicKLM(src, klm, t, s)) {
        SkScalar t0 = static_cast<SkScalar>(t[0] / s[0]);
        SkScalar t1 = static_cast<SkScalar>(t[1] / s[1]);
        SkASSERT(t0 <= t1); // Technically t0 != t1 in a loop, but there may be FP error.

        if (t0 < 1 && t1 > 0) {
            *loopIndex = 0;
            if (t0 > 0) {
                chops.push_back(t0);
                *loopIndex = 1;
            }
            if (t1 < 1) {
                chops.push_back(t1);
                *loopIndex = chops.count() - 1;
            }
        }
    }

    SkChopCubicAt(src, dst, chops.begin(), chops.count());
    return chops.count() + 1;
}