1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
|
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrPathUtils.h"
#include "GrPoint.h"
#include "SkGeometry.h"
SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
const SkMatrix& viewM,
const SkRect& pathBounds) {
// In order to tesselate the path we get a bound on how much the matrix can
// stretch when mapping to screen coordinates.
SkScalar stretch = viewM.getMaxStretch();
SkScalar srcTol = devTol;
if (stretch < 0) {
// take worst case mapRadius amoung four corners.
// (less than perfect)
for (int i = 0; i < 4; ++i) {
SkMatrix mat;
mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
(i < 2) ? pathBounds.fTop : pathBounds.fBottom);
mat.postConcat(viewM);
stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1));
}
}
srcTol = SkScalarDiv(srcTol, stretch);
return srcTol;
}
static const int MAX_POINTS_PER_CURVE = 1 << 10;
static const SkScalar gMinCurveTol = 0.0001f;
uint32_t GrPathUtils::quadraticPointCount(const GrPoint points[],
SkScalar tol) {
if (tol < gMinCurveTol) {
tol = gMinCurveTol;
}
SkASSERT(tol > 0);
SkScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]);
if (d <= tol) {
return 1;
} else {
// Each time we subdivide, d should be cut in 4. So we need to
// subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
// points.
// 2^(log4(x)) = sqrt(x);
int temp = SkScalarCeilToInt(SkScalarSqrt(SkScalarDiv(d, tol)));
int pow2 = GrNextPow2(temp);
// Because of NaNs & INFs we can wind up with a degenerate temp
// such that pow2 comes out negative. Also, our point generator
// will always output at least one pt.
if (pow2 < 1) {
pow2 = 1;
}
return GrMin(pow2, MAX_POINTS_PER_CURVE);
}
}
uint32_t GrPathUtils::generateQuadraticPoints(const GrPoint& p0,
const GrPoint& p1,
const GrPoint& p2,
SkScalar tolSqd,
GrPoint** points,
uint32_t pointsLeft) {
if (pointsLeft < 2 ||
(p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) {
(*points)[0] = p2;
*points += 1;
return 1;
}
GrPoint q[] = {
{ SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
{ SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
};
GrPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
pointsLeft >>= 1;
uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
return a + b;
}
uint32_t GrPathUtils::cubicPointCount(const GrPoint points[],
SkScalar tol) {
if (tol < gMinCurveTol) {
tol = gMinCurveTol;
}
SkASSERT(tol > 0);
SkScalar d = GrMax(
points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]),
points[2].distanceToLineSegmentBetweenSqd(points[0], points[3]));
d = SkScalarSqrt(d);
if (d <= tol) {
return 1;
} else {
int temp = SkScalarCeilToInt(SkScalarSqrt(SkScalarDiv(d, tol)));
int pow2 = GrNextPow2(temp);
// Because of NaNs & INFs we can wind up with a degenerate temp
// such that pow2 comes out negative. Also, our point generator
// will always output at least one pt.
if (pow2 < 1) {
pow2 = 1;
}
return GrMin(pow2, MAX_POINTS_PER_CURVE);
}
}
uint32_t GrPathUtils::generateCubicPoints(const GrPoint& p0,
const GrPoint& p1,
const GrPoint& p2,
const GrPoint& p3,
SkScalar tolSqd,
GrPoint** points,
uint32_t pointsLeft) {
if (pointsLeft < 2 ||
(p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd &&
p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) {
(*points)[0] = p3;
*points += 1;
return 1;
}
GrPoint q[] = {
{ SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
{ SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
{ SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
};
GrPoint r[] = {
{ SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
{ SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
};
GrPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
pointsLeft >>= 1;
uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
return a + b;
}
int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths,
SkScalar tol) {
if (tol < gMinCurveTol) {
tol = gMinCurveTol;
}
SkASSERT(tol > 0);
int pointCount = 0;
*subpaths = 1;
bool first = true;
SkPath::Iter iter(path, false);
SkPath::Verb verb;
GrPoint pts[4];
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kLine_Verb:
pointCount += 1;
break;
case SkPath::kQuad_Verb:
pointCount += quadraticPointCount(pts, tol);
break;
case SkPath::kCubic_Verb:
pointCount += cubicPointCount(pts, tol);
break;
case SkPath::kMove_Verb:
pointCount += 1;
if (!first) {
++(*subpaths);
}
break;
default:
break;
}
first = false;
}
return pointCount;
}
void GrPathUtils::QuadUVMatrix::set(const GrPoint qPts[3]) {
SkMatrix m;
// We want M such that M * xy_pt = uv_pt
// We know M * control_pts = [0 1/2 1]
// [0 0 1]
// [1 1 1]
// And control_pts = [x0 x1 x2]
// [y0 y1 y2]
// [1 1 1 ]
// We invert the control pt matrix and post concat to both sides to get M.
// Using the known form of the control point matrix and the result, we can
// optimize and improve precision.
double x0 = qPts[0].fX;
double y0 = qPts[0].fY;
double x1 = qPts[1].fX;
double y1 = qPts[1].fY;
double x2 = qPts[2].fX;
double y2 = qPts[2].fY;
double det = x0*y1 - y0*x1 + x2*y0 - y2*x0 + x1*y2 - y1*x2;
if (!sk_float_isfinite(det)
|| SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) {
// The quad is degenerate. Hopefully this is rare. Find the pts that are
// farthest apart to compute a line (unless it is really a pt).
SkScalar maxD = qPts[0].distanceToSqd(qPts[1]);
int maxEdge = 0;
SkScalar d = qPts[1].distanceToSqd(qPts[2]);
if (d > maxD) {
maxD = d;
maxEdge = 1;
}
d = qPts[2].distanceToSqd(qPts[0]);
if (d > maxD) {
maxD = d;
maxEdge = 2;
}
// We could have a tolerance here, not sure if it would improve anything
if (maxD > 0) {
// Set the matrix to give (u = 0, v = distance_to_line)
GrVec lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
// when looking from the point 0 down the line we want positive
// distances to be to the left. This matches the non-degenerate
// case.
lineVec.setOrthog(lineVec, GrPoint::kLeft_Side);
lineVec.dot(qPts[0]);
// first row
fM[0] = 0;
fM[1] = 0;
fM[2] = 0;
// second row
fM[3] = lineVec.fX;
fM[4] = lineVec.fY;
fM[5] = -lineVec.dot(qPts[maxEdge]);
} else {
// It's a point. It should cover zero area. Just set the matrix such
// that (u, v) will always be far away from the quad.
fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
}
} else {
double scale = 1.0/det;
// compute adjugate matrix
double a0, a1, a2, a3, a4, a5, a6, a7, a8;
a0 = y1-y2;
a1 = x2-x1;
a2 = x1*y2-x2*y1;
a3 = y2-y0;
a4 = x0-x2;
a5 = x2*y0-x0*y2;
a6 = y0-y1;
a7 = x1-x0;
a8 = x0*y1-x1*y0;
// this performs the uv_pts*adjugate(control_pts) multiply,
// then does the scale by 1/det afterwards to improve precision
m[SkMatrix::kMScaleX] = (float)((0.5*a3 + a6)*scale);
m[SkMatrix::kMSkewX] = (float)((0.5*a4 + a7)*scale);
m[SkMatrix::kMTransX] = (float)((0.5*a5 + a8)*scale);
m[SkMatrix::kMSkewY] = (float)(a6*scale);
m[SkMatrix::kMScaleY] = (float)(a7*scale);
m[SkMatrix::kMTransY] = (float)(a8*scale);
m[SkMatrix::kMPersp0] = (float)((a0 + a3 + a6)*scale);
m[SkMatrix::kMPersp1] = (float)((a1 + a4 + a7)*scale);
m[SkMatrix::kMPersp2] = (float)((a2 + a5 + a8)*scale);
// The matrix should not have perspective.
SkDEBUGCODE(static const SkScalar gTOL = 1.f / 100.f);
SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp0)) < gTOL);
SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp1)) < gTOL);
// It may not be normalized to have 1.0 in the bottom right
float m33 = m.get(SkMatrix::kMPersp2);
if (1.f != m33) {
m33 = 1.f / m33;
fM[0] = m33 * m.get(SkMatrix::kMScaleX);
fM[1] = m33 * m.get(SkMatrix::kMSkewX);
fM[2] = m33 * m.get(SkMatrix::kMTransX);
fM[3] = m33 * m.get(SkMatrix::kMSkewY);
fM[4] = m33 * m.get(SkMatrix::kMScaleY);
fM[5] = m33 * m.get(SkMatrix::kMTransY);
} else {
fM[0] = m.get(SkMatrix::kMScaleX);
fM[1] = m.get(SkMatrix::kMSkewX);
fM[2] = m.get(SkMatrix::kMTransX);
fM[3] = m.get(SkMatrix::kMSkewY);
fM[4] = m.get(SkMatrix::kMScaleY);
fM[5] = m.get(SkMatrix::kMTransY);
}
}
}
////////////////////////////////////////////////////////////////////////////////
// k = (y2 - y0, x0 - x2, (x2 - x0)*y0 - (y2 - y0)*x0 )
// l = (2*w * (y1 - y0), 2*w * (x0 - x1), 2*w * (x1*y0 - x0*y1))
// m = (2*w * (y2 - y1), 2*w * (x1 - x2), 2*w * (x2*y1 - x1*y2))
void GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkScalar klm[9]) {
const SkScalar w2 = 2.f * weight;
klm[0] = p[2].fY - p[0].fY;
klm[1] = p[0].fX - p[2].fX;
klm[2] = (p[2].fX - p[0].fX) * p[0].fY - (p[2].fY - p[0].fY) * p[0].fX;
klm[3] = w2 * (p[1].fY - p[0].fY);
klm[4] = w2 * (p[0].fX - p[1].fX);
klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY);
klm[6] = w2 * (p[2].fY - p[1].fY);
klm[7] = w2 * (p[1].fX - p[2].fX);
klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY);
// scale the max absolute value of coeffs to 10
SkScalar scale = 0.f;
for (int i = 0; i < 9; ++i) {
scale = SkMaxScalar(scale, SkScalarAbs(klm[i]));
}
SkASSERT(scale > 0.f);
scale = 10.f / scale;
for (int i = 0; i < 9; ++i) {
klm[i] *= scale;
}
}
////////////////////////////////////////////////////////////////////////////////
namespace {
// a is the first control point of the cubic.
// ab is the vector from a to the second control point.
// dc is the vector from the fourth to the third control point.
// d is the fourth control point.
// p is the candidate quadratic control point.
// this assumes that the cubic doesn't inflect and is simple
bool is_point_within_cubic_tangents(const SkPoint& a,
const SkVector& ab,
const SkVector& dc,
const SkPoint& d,
SkPath::Direction dir,
const SkPoint p) {
SkVector ap = p - a;
SkScalar apXab = ap.cross(ab);
if (SkPath::kCW_Direction == dir) {
if (apXab > 0) {
return false;
}
} else {
SkASSERT(SkPath::kCCW_Direction == dir);
if (apXab < 0) {
return false;
}
}
SkVector dp = p - d;
SkScalar dpXdc = dp.cross(dc);
if (SkPath::kCW_Direction == dir) {
if (dpXdc < 0) {
return false;
}
} else {
SkASSERT(SkPath::kCCW_Direction == dir);
if (dpXdc > 0) {
return false;
}
}
return true;
}
void convert_noninflect_cubic_to_quads(const SkPoint p[4],
SkScalar toleranceSqd,
bool constrainWithinTangents,
SkPath::Direction dir,
SkTArray<SkPoint, true>* quads,
int sublevel = 0) {
// Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
// p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
SkVector ab = p[1] - p[0];
SkVector dc = p[2] - p[3];
if (ab.isZero()) {
if (dc.isZero()) {
SkPoint* degQuad = quads->push_back_n(3);
degQuad[0] = p[0];
degQuad[1] = p[0];
degQuad[2] = p[3];
return;
}
ab = p[2] - p[0];
}
if (dc.isZero()) {
dc = p[1] - p[3];
}
// When the ab and cd tangents are nearly parallel with vector from d to a the constraint that
// the quad point falls between the tangents becomes hard to enforce and we are likely to hit
// the max subdivision count. However, in this case the cubic is approaching a line and the
// accuracy of the quad point isn't so important. We check if the two middle cubic control
// points are very close to the baseline vector. If so then we just pick quadratic points on the
// control polygon.
if (constrainWithinTangents) {
SkVector da = p[0] - p[3];
SkScalar invDALengthSqd = da.lengthSqd();
if (invDALengthSqd > SK_ScalarNearlyZero) {
invDALengthSqd = SkScalarInvert(invDALengthSqd);
// cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
// same goed for point c using vector cd.
SkScalar detABSqd = ab.cross(da);
detABSqd = SkScalarSquare(detABSqd);
SkScalar detDCSqd = dc.cross(da);
detDCSqd = SkScalarSquare(detDCSqd);
if (SkScalarMul(detABSqd, invDALengthSqd) < toleranceSqd &&
SkScalarMul(detDCSqd, invDALengthSqd) < toleranceSqd) {
SkPoint b = p[0] + ab;
SkPoint c = p[3] + dc;
SkPoint mid = b + c;
mid.scale(SK_ScalarHalf);
// Insert two quadratics to cover the case when ab points away from d and/or dc
// points away from a.
if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) {
SkPoint* qpts = quads->push_back_n(6);
qpts[0] = p[0];
qpts[1] = b;
qpts[2] = mid;
qpts[3] = mid;
qpts[4] = c;
qpts[5] = p[3];
} else {
SkPoint* qpts = quads->push_back_n(3);
qpts[0] = p[0];
qpts[1] = mid;
qpts[2] = p[3];
}
return;
}
}
}
static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
static const int kMaxSubdivs = 10;
ab.scale(kLengthScale);
dc.scale(kLengthScale);
// e0 and e1 are extrapolations along vectors ab and dc.
SkVector c0 = p[0];
c0 += ab;
SkVector c1 = p[3];
c1 += dc;
SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : c0.distanceToSqd(c1);
if (dSqd < toleranceSqd) {
SkPoint cAvg = c0;
cAvg += c1;
cAvg.scale(SK_ScalarHalf);
bool subdivide = false;
if (constrainWithinTangents &&
!is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
// choose a new cAvg that is the intersection of the two tangent lines.
ab.setOrthog(ab);
SkScalar z0 = -ab.dot(p[0]);
dc.setOrthog(dc);
SkScalar z1 = -dc.dot(p[3]);
cAvg.fX = SkScalarMul(ab.fY, z1) - SkScalarMul(z0, dc.fY);
cAvg.fY = SkScalarMul(z0, dc.fX) - SkScalarMul(ab.fX, z1);
SkScalar z = SkScalarMul(ab.fX, dc.fY) - SkScalarMul(ab.fY, dc.fX);
z = SkScalarInvert(z);
cAvg.fX *= z;
cAvg.fY *= z;
if (sublevel <= kMaxSubdivs) {
SkScalar d0Sqd = c0.distanceToSqd(cAvg);
SkScalar d1Sqd = c1.distanceToSqd(cAvg);
// We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
// the distances and tolerance can't be negative.
// (d0 + d1)^2 > toleranceSqd
// d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
SkScalar d0d1 = SkScalarSqrt(SkScalarMul(d0Sqd, d1Sqd));
subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
}
}
if (!subdivide) {
SkPoint* pts = quads->push_back_n(3);
pts[0] = p[0];
pts[1] = cAvg;
pts[2] = p[3];
return;
}
}
SkPoint choppedPts[7];
SkChopCubicAtHalf(p, choppedPts);
convert_noninflect_cubic_to_quads(choppedPts + 0,
toleranceSqd,
constrainWithinTangents,
dir,
quads,
sublevel + 1);
convert_noninflect_cubic_to_quads(choppedPts + 3,
toleranceSqd,
constrainWithinTangents,
dir,
quads,
sublevel + 1);
}
}
void GrPathUtils::convertCubicToQuads(const GrPoint p[4],
SkScalar tolScale,
bool constrainWithinTangents,
SkPath::Direction dir,
SkTArray<SkPoint, true>* quads) {
SkPoint chopped[10];
int count = SkChopCubicAtInflections(p, chopped);
// base tolerance is 1 pixel.
static const SkScalar kTolerance = SK_Scalar1;
const SkScalar tolSqd = SkScalarSquare(SkScalarMul(tolScale, kTolerance));
for (int i = 0; i < count; ++i) {
SkPoint* cubic = chopped + 3*i;
convert_noninflect_cubic_to_quads(cubic, tolSqd, constrainWithinTangents, dir, quads);
}
}
////////////////////////////////////////////////////////////////////////////////
enum CubicType {
kSerpentine_CubicType,
kCusp_CubicType,
kLoop_CubicType,
kQuadratic_CubicType,
kLine_CubicType,
kPoint_CubicType
};
// discr(I) = d0^2 * (3*d1^2 - 4*d0*d2)
// Classification:
// discr(I) > 0 Serpentine
// discr(I) = 0 Cusp
// discr(I) < 0 Loop
// d0 = d1 = 0 Quadratic
// d0 = d1 = d2 = 0 Line
// p0 = p1 = p2 = p3 Point
static CubicType classify_cubic(const SkPoint p[4], const SkScalar d[3]) {
if (p[0] == p[1] && p[0] == p[2] && p[0] == p[3]) {
return kPoint_CubicType;
}
const SkScalar discr = d[0] * d[0] * (3.f * d[1] * d[1] - 4.f * d[0] * d[2]);
if (discr > SK_ScalarNearlyZero) {
return kSerpentine_CubicType;
} else if (discr < -SK_ScalarNearlyZero) {
return kLoop_CubicType;
} else {
if (0.f == d[0] && 0.f == d[1]) {
return (0.f == d[2] ? kLine_CubicType : kQuadratic_CubicType);
} else {
return kCusp_CubicType;
}
}
}
// Assumes the third component of points is 1.
// Calcs p0 . (p1 x p2)
static SkScalar calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
const SkScalar xComp = p0.fX * (p1.fY - p2.fY);
const SkScalar yComp = p0.fY * (p2.fX - p1.fX);
const SkScalar wComp = p1.fX * p2.fY - p1.fY * p2.fX;
return (xComp + yComp + wComp);
}
// Solves linear system to extract klm
// P.K = k (similarly for l, m)
// Where P is matrix of control points
// K is coefficients for the line K
// k is vector of values of K evaluated at the control points
// Solving for K, thus K = P^(-1) . k
static void calc_cubic_klm(const SkPoint p[4], const SkScalar controlK[4],
const SkScalar controlL[4], const SkScalar controlM[4],
SkScalar k[3], SkScalar l[3], SkScalar m[3]) {
SkMatrix matrix;
matrix.setAll(p[0].fX, p[0].fY, 1.f,
p[1].fX, p[1].fY, 1.f,
p[2].fX, p[2].fY, 1.f);
SkMatrix inverse;
if (matrix.invert(&inverse)) {
inverse.mapHomogeneousPoints(k, controlK, 1);
inverse.mapHomogeneousPoints(l, controlL, 1);
inverse.mapHomogeneousPoints(m, controlM, 1);
}
}
static void set_serp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
SkScalar tempSqrt = SkScalarSqrt(9.f * d[1] * d[1] - 12.f * d[0] * d[2]);
SkScalar ls = 3.f * d[1] - tempSqrt;
SkScalar lt = 6.f * d[0];
SkScalar ms = 3.f * d[1] + tempSqrt;
SkScalar mt = 6.f * d[0];
k[0] = ls * ms;
k[1] = (3.f * ls * ms - ls * mt - lt * ms) / 3.f;
k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f;
k[3] = (lt - ls) * (mt - ms);
l[0] = ls * ls * ls;
const SkScalar lt_ls = lt - ls;
l[1] = ls * ls * lt_ls * -1.f;
l[2] = lt_ls * lt_ls * ls;
l[3] = -1.f * lt_ls * lt_ls * lt_ls;
m[0] = ms * ms * ms;
const SkScalar mt_ms = mt - ms;
m[1] = ms * ms * mt_ms * -1.f;
m[2] = mt_ms * mt_ms * ms;
m[3] = -1.f * mt_ms * mt_ms * mt_ms;
// If d0 < 0 we need to flip the orientation of our curve
// This is done by negating the k and l values
// We want negative distance values to be on the inside
if ( d[0] > 0) {
for (int i = 0; i < 4; ++i) {
k[i] = -k[i];
l[i] = -l[i];
}
}
}
static void set_loop_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
SkScalar ls = d[1] - tempSqrt;
SkScalar lt = 2.f * d[0];
SkScalar ms = d[1] + tempSqrt;
SkScalar mt = 2.f * d[0];
k[0] = ls * ms;
k[1] = (3.f * ls*ms - ls * mt - lt * ms) / 3.f;
k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f;
k[3] = (lt - ls) * (mt - ms);
l[0] = ls * ls * ms;
l[1] = (ls * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/-3.f;
l[2] = ((lt - ls) * (ls * (2.f * mt - 3.f * ms) + lt * ms))/3.f;
l[3] = -1.f * (lt - ls) * (lt - ls) * (mt - ms);
m[0] = ls * ms * ms;
m[1] = (ms * (ls * (2.f * mt - 3.f * ms) + lt * ms))/-3.f;
m[2] = ((mt - ms) * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/3.f;
m[3] = -1.f * (lt - ls) * (mt - ms) * (mt - ms);
// If (d0 < 0 && sign(k1) > 0) || (d0 > 0 && sign(k1) < 0),
// we need to flip the orientation of our curve.
// This is done by negating the k and l values
if ( (d[0] < 0 && k[1] > 0) || (d[0] > 0 && k[1] < 0)) {
for (int i = 0; i < 4; ++i) {
k[i] = -k[i];
l[i] = -l[i];
}
}
}
static void set_cusp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
const SkScalar ls = d[2];
const SkScalar lt = 3.f * d[1];
k[0] = ls;
k[1] = ls - lt / 3.f;
k[2] = ls - 2.f * lt / 3.f;
k[3] = ls - lt;
l[0] = ls * ls * ls;
const SkScalar ls_lt = ls - lt;
l[1] = ls * ls * ls_lt;
l[2] = ls_lt * ls_lt * ls;
l[3] = ls_lt * ls_lt * ls_lt;
m[0] = 1.f;
m[1] = 1.f;
m[2] = 1.f;
m[3] = 1.f;
}
// For the case when a cubic is actually a quadratic
// M =
// 0 0 0
// 1/3 0 1/3
// 2/3 1/3 2/3
// 1 1 1
static void set_quadratic_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
k[0] = 0.f;
k[1] = 1.f/3.f;
k[2] = 2.f/3.f;
k[3] = 1.f;
l[0] = 0.f;
l[1] = 0.f;
l[2] = 1.f/3.f;
l[3] = 1.f;
m[0] = 0.f;
m[1] = 1.f/3.f;
m[2] = 2.f/3.f;
m[3] = 1.f;
// If d2 < 0 we need to flip the orientation of our curve
// This is done by negating the k and l values
if ( d[2] > 0) {
for (int i = 0; i < 4; ++i) {
k[i] = -k[i];
l[i] = -l[i];
}
}
}
// Calc coefficients of I(s,t) where roots of I are inflection points of curve
// I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2)
// d0 = a1 - 2*a2+3*a3
// d1 = -a2 + 3*a3
// d2 = 3*a3
// a1 = p0 . (p3 x p2)
// a2 = p1 . (p0 x p3)
// a3 = p2 . (p1 x p0)
// Places the values of d1, d2, d3 in array d passed in
static void calc_cubic_inflection_func(const SkPoint p[4], SkScalar d[3]) {
SkScalar a1 = calc_dot_cross_cubic(p[0], p[3], p[2]);
SkScalar a2 = calc_dot_cross_cubic(p[1], p[0], p[3]);
SkScalar a3 = calc_dot_cross_cubic(p[2], p[1], p[0]);
// need to scale a's or values in later calculations will grow to high
SkScalar max = SkScalarAbs(a1);
max = SkMaxScalar(max, SkScalarAbs(a2));
max = SkMaxScalar(max, SkScalarAbs(a3));
max = 1.f/max;
a1 = a1 * max;
a2 = a2 * max;
a3 = a3 * max;
d[2] = 3.f * a3;
d[1] = d[2] - a2;
d[0] = d[1] - a2 + a1;
}
int GrPathUtils::chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkScalar klm[9],
SkScalar klm_rev[3]) {
// Variable to store the two parametric values at the loop double point
SkScalar smallS = 0.f;
SkScalar largeS = 0.f;
SkScalar d[3];
calc_cubic_inflection_func(src, d);
CubicType cType = classify_cubic(src, d);
int chop_count = 0;
if (kLoop_CubicType == cType) {
SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
SkScalar ls = d[1] - tempSqrt;
SkScalar lt = 2.f * d[0];
SkScalar ms = d[1] + tempSqrt;
SkScalar mt = 2.f * d[0];
ls = ls / lt;
ms = ms / mt;
// need to have t values sorted since this is what is expected by SkChopCubicAt
if (ls <= ms) {
smallS = ls;
largeS = ms;
} else {
smallS = ms;
largeS = ls;
}
SkScalar chop_ts[2];
if (smallS > 0.f && smallS < 1.f) {
chop_ts[chop_count++] = smallS;
}
if (largeS > 0.f && largeS < 1.f) {
chop_ts[chop_count++] = largeS;
}
if(dst) {
SkChopCubicAt(src, dst, chop_ts, chop_count);
}
} else {
if (dst) {
memcpy(dst, src, sizeof(SkPoint) * 4);
}
}
if (klm && klm_rev) {
// Set klm_rev to to match the sub_section of cubic that needs to have its orientation
// flipped. This will always be the section that is the "loop"
if (2 == chop_count) {
klm_rev[0] = 1.f;
klm_rev[1] = -1.f;
klm_rev[2] = 1.f;
} else if (1 == chop_count) {
if (smallS < 0.f) {
klm_rev[0] = -1.f;
klm_rev[1] = 1.f;
} else {
klm_rev[0] = 1.f;
klm_rev[1] = -1.f;
}
} else {
if (smallS < 0.f && largeS > 1.f) {
klm_rev[0] = -1.f;
} else {
klm_rev[0] = 1.f;
}
}
SkScalar controlK[4];
SkScalar controlL[4];
SkScalar controlM[4];
if (kSerpentine_CubicType == cType || (kCusp_CubicType == cType && 0.f != d[0])) {
set_serp_klm(d, controlK, controlL, controlM);
} else if (kLoop_CubicType == cType) {
set_loop_klm(d, controlK, controlL, controlM);
} else if (kCusp_CubicType == cType) {
SkASSERT(0.f == d[0]);
set_cusp_klm(d, controlK, controlL, controlM);
} else if (kQuadratic_CubicType == cType) {
set_quadratic_klm(d, controlK, controlL, controlM);
}
calc_cubic_klm(src, controlK, controlL, controlM, klm, &klm[3], &klm[6]);
}
return chop_count + 1;
}
void GrPathUtils::getCubicKLM(const SkPoint p[4], SkScalar klm[9]) {
SkScalar d[3];
calc_cubic_inflection_func(p, d);
CubicType cType = classify_cubic(p, d);
SkScalar controlK[4];
SkScalar controlL[4];
SkScalar controlM[4];
if (kSerpentine_CubicType == cType || (kCusp_CubicType == cType && 0.f != d[0])) {
set_serp_klm(d, controlK, controlL, controlM);
} else if (kLoop_CubicType == cType) {
set_loop_klm(d, controlK, controlL, controlM);
} else if (kCusp_CubicType == cType) {
SkASSERT(0.f == d[0]);
set_cusp_klm(d, controlK, controlL, controlM);
} else if (kQuadratic_CubicType == cType) {
set_quadratic_klm(d, controlK, controlL, controlM);
}
calc_cubic_klm(p, controlK, controlL, controlM, klm, &klm[3], &klm[6]);
}
|