aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/GrPathUtils.cpp
blob: f169455b4ad019b38b4f8349a79c8cd6bd2ce88c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "GrPathUtils.h"

#include "GrPoint.h"
#include "SkGeometry.h"

SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
                                          const SkMatrix& viewM,
                                          const SkRect& pathBounds) {
    // In order to tesselate the path we get a bound on how much the matrix can
    // stretch when mapping to screen coordinates.
    SkScalar stretch = viewM.getMaxStretch();
    SkScalar srcTol = devTol;

    if (stretch < 0) {
        // take worst case mapRadius amoung four corners.
        // (less than perfect)
        for (int i = 0; i < 4; ++i) {
            SkMatrix mat;
            mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
                             (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
            mat.postConcat(viewM);
            stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1));
        }
    }
    srcTol = SkScalarDiv(srcTol, stretch);
    return srcTol;
}

static const int MAX_POINTS_PER_CURVE = 1 << 10;
static const SkScalar gMinCurveTol = SkFloatToScalar(0.0001f);

uint32_t GrPathUtils::quadraticPointCount(const GrPoint points[],
                                          SkScalar tol) {
    if (tol < gMinCurveTol) {
        tol = gMinCurveTol;
    }
    GrAssert(tol > 0);

    SkScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]);
    if (d <= tol) {
        return 1;
    } else {
        // Each time we subdivide, d should be cut in 4. So we need to
        // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
        // points.
        // 2^(log4(x)) = sqrt(x);
        int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol)));
        int pow2 = GrNextPow2(temp);
        // Because of NaNs & INFs we can wind up with a degenerate temp
        // such that pow2 comes out negative. Also, our point generator
        // will always output at least one pt.
        if (pow2 < 1) {
            pow2 = 1;
        }
        return GrMin(pow2, MAX_POINTS_PER_CURVE);
    }
}

uint32_t GrPathUtils::generateQuadraticPoints(const GrPoint& p0,
                                              const GrPoint& p1,
                                              const GrPoint& p2,
                                              SkScalar tolSqd,
                                              GrPoint** points,
                                              uint32_t pointsLeft) {
    if (pointsLeft < 2 ||
        (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) {
        (*points)[0] = p2;
        *points += 1;
        return 1;
    }

    GrPoint q[] = {
        { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
        { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
    };
    GrPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };

    pointsLeft >>= 1;
    uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
    uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
    return a + b;
}

uint32_t GrPathUtils::cubicPointCount(const GrPoint points[],
                                           SkScalar tol) {
    if (tol < gMinCurveTol) {
        tol = gMinCurveTol;
    }
    GrAssert(tol > 0);

    SkScalar d = GrMax(
        points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]),
        points[2].distanceToLineSegmentBetweenSqd(points[0], points[3]));
    d = SkScalarSqrt(d);
    if (d <= tol) {
        return 1;
    } else {
        int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol)));
        int pow2 = GrNextPow2(temp);
        // Because of NaNs & INFs we can wind up with a degenerate temp
        // such that pow2 comes out negative. Also, our point generator
        // will always output at least one pt.
        if (pow2 < 1) {
            pow2 = 1;
        }
        return GrMin(pow2, MAX_POINTS_PER_CURVE);
    }
}

uint32_t GrPathUtils::generateCubicPoints(const GrPoint& p0,
                                          const GrPoint& p1,
                                          const GrPoint& p2,
                                          const GrPoint& p3,
                                          SkScalar tolSqd,
                                          GrPoint** points,
                                          uint32_t pointsLeft) {
    if (pointsLeft < 2 ||
        (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd &&
         p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) {
            (*points)[0] = p3;
            *points += 1;
            return 1;
        }
    GrPoint q[] = {
        { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
        { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
        { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
    };
    GrPoint r[] = {
        { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
        { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
    };
    GrPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
    pointsLeft >>= 1;
    uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
    uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
    return a + b;
}

int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths,
                                     SkScalar tol) {
    if (tol < gMinCurveTol) {
        tol = gMinCurveTol;
    }
    GrAssert(tol > 0);

    int pointCount = 0;
    *subpaths = 1;

    bool first = true;

    SkPath::Iter iter(path, false);
    SkPath::Verb verb;

    GrPoint pts[4];
    while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {

        switch (verb) {
            case SkPath::kLine_Verb:
                pointCount += 1;
                break;
            case SkPath::kQuad_Verb:
                pointCount += quadraticPointCount(pts, tol);
                break;
            case SkPath::kCubic_Verb:
                pointCount += cubicPointCount(pts, tol);
                break;
            case SkPath::kMove_Verb:
                pointCount += 1;
                if (!first) {
                    ++(*subpaths);
                }
                break;
            default:
                break;
        }
        first = false;
    }
    return pointCount;
}

void GrPathUtils::QuadUVMatrix::set(const GrPoint qPts[3]) {
    // can't make this static, no cons :(
    SkMatrix UVpts;
#ifndef SK_SCALAR_IS_FLOAT
    GrCrash("Expected scalar is float.");
#endif
    SkMatrix m;
    // We want M such that M * xy_pt = uv_pt
    // We know M * control_pts = [0  1/2 1]
    //                           [0  0   1]
    //                           [1  1   1]
    // We invert the control pt matrix and post concat to both sides to get M.
    UVpts.setAll(0,   SK_ScalarHalf,  SK_Scalar1,
                 0,               0,  SK_Scalar1,
                 SkScalarToPersp(SK_Scalar1),
                 SkScalarToPersp(SK_Scalar1),
                 SkScalarToPersp(SK_Scalar1));
    m.setAll(qPts[0].fX, qPts[1].fX, qPts[2].fX,
             qPts[0].fY, qPts[1].fY, qPts[2].fY,
             SkScalarToPersp(SK_Scalar1),
             SkScalarToPersp(SK_Scalar1),
             SkScalarToPersp(SK_Scalar1));
    if (!m.invert(&m)) {
        // The quad is degenerate. Hopefully this is rare. Find the pts that are
        // farthest apart to compute a line (unless it is really a pt).
        SkScalar maxD = qPts[0].distanceToSqd(qPts[1]);
        int maxEdge = 0;
        SkScalar d = qPts[1].distanceToSqd(qPts[2]);
        if (d > maxD) {
            maxD = d;
            maxEdge = 1;
        }
        d = qPts[2].distanceToSqd(qPts[0]);
        if (d > maxD) {
            maxD = d;
            maxEdge = 2;
        }
        // We could have a tolerance here, not sure if it would improve anything
        if (maxD > 0) {
            // Set the matrix to give (u = 0, v = distance_to_line)
            GrVec lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
            // when looking from the point 0 down the line we want positive
            // distances to be to the left. This matches the non-degenerate
            // case.
            lineVec.setOrthog(lineVec, GrPoint::kLeft_Side);
            lineVec.dot(qPts[0]);
            // first row
            fM[0] = 0;
            fM[1] = 0;
            fM[2] = 0;
            // second row
            fM[3] = lineVec.fX;
            fM[4] = lineVec.fY;
            fM[5] = -lineVec.dot(qPts[maxEdge]);
        } else {
            // It's a point. It should cover zero area. Just set the matrix such
            // that (u, v) will always be far away from the quad.
            fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
            fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
        }
    } else {
        m.postConcat(UVpts);

        // The matrix should not have perspective.
        SkDEBUGCODE(static const SkScalar gTOL = SkFloatToScalar(1.f / 100.f));
        GrAssert(SkScalarAbs(m.get(SkMatrix::kMPersp0)) < gTOL);
        GrAssert(SkScalarAbs(m.get(SkMatrix::kMPersp1)) < gTOL);

        // It may not be normalized to have 1.0 in the bottom right
        float m33 = m.get(SkMatrix::kMPersp2);
        if (1.f != m33) {
            m33 = 1.f / m33;
            fM[0] = m33 * m.get(SkMatrix::kMScaleX);
            fM[1] = m33 * m.get(SkMatrix::kMSkewX);
            fM[2] = m33 * m.get(SkMatrix::kMTransX);
            fM[3] = m33 * m.get(SkMatrix::kMSkewY);
            fM[4] = m33 * m.get(SkMatrix::kMScaleY);
            fM[5] = m33 * m.get(SkMatrix::kMTransY);
        } else {
            fM[0] = m.get(SkMatrix::kMScaleX);
            fM[1] = m.get(SkMatrix::kMSkewX);
            fM[2] = m.get(SkMatrix::kMTransX);
            fM[3] = m.get(SkMatrix::kMSkewY);
            fM[4] = m.get(SkMatrix::kMScaleY);
            fM[5] = m.get(SkMatrix::kMTransY);
        }
    }
}

namespace {

// a is the first control point of the cubic.
// ab is the vector from a to the second control point.
// dc is the vector from the fourth to the third control point.
// d is the fourth control point.
// p is the candidate quadratic control point.
// this assumes that the cubic doesn't inflect and is simple
bool is_point_within_cubic_tangents(const SkPoint& a,
                                    const SkVector& ab,
                                    const SkVector& dc,
                                    const SkPoint& d,
                                    SkPath::Direction dir,
                                    const SkPoint p) {
    SkVector ap = p - a;
    SkScalar apXab = ap.cross(ab);
    if (SkPath::kCW_Direction == dir) {
        if (apXab > 0) {
            return false;
        }
    } else {
        GrAssert(SkPath::kCCW_Direction == dir);
        if (apXab < 0) {
            return false;
        }
    }

    SkVector dp = p - d;
    SkScalar dpXdc = dp.cross(dc);
    if (SkPath::kCW_Direction == dir) {
        if (dpXdc < 0) {
            return false;
        }
    } else {
        GrAssert(SkPath::kCCW_Direction == dir);
        if (dpXdc > 0) {
            return false;
        }
    }
    return true;
}

void convert_noninflect_cubic_to_quads(const SkPoint p[4],
                                       SkScalar toleranceSqd,
                                       bool constrainWithinTangents,
                                       SkPath::Direction dir,
                                       SkTArray<SkPoint, true>* quads,
                                       int sublevel = 0) {

    // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
    // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].

    SkVector ab = p[1] - p[0];
    SkVector dc = p[2] - p[3];

    if (ab.isZero()) {
        if (dc.isZero()) {
            SkPoint* degQuad = quads->push_back_n(3);
            degQuad[0] = p[0];
            degQuad[1] = p[0];
            degQuad[2] = p[3];
            return;
        }
        ab = p[2] - p[0];
    }
    if (dc.isZero()) {
        dc = p[1] - p[3];
    }

    // When the ab and cd tangents are nearly parallel with vector from d to a the constraint that
    // the quad point falls between the tangents becomes hard to enforce and we are likely to hit
    // the max subdivision count. However, in this case the cubic is approaching a line and the
    // accuracy of the quad point isn't so important. We check if the two middle cubic control
    // points are very close to the baseline vector. If so then we just pick quadratic points on the
    // control polygon.

    if (constrainWithinTangents) {
        SkVector da = p[0] - p[3];
        SkScalar invDALengthSqd = da.lengthSqd();
        if (invDALengthSqd > SK_ScalarNearlyZero) {
            invDALengthSqd = SkScalarInvert(invDALengthSqd);
            // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
            // same goed for point c using vector cd.
            SkScalar detABSqd = ab.cross(da);
            detABSqd = SkScalarSquare(detABSqd);
            SkScalar detDCSqd = dc.cross(da);
            detDCSqd = SkScalarSquare(detDCSqd);
            if (SkScalarMul(detABSqd, invDALengthSqd) < toleranceSqd &&
                SkScalarMul(detDCSqd, invDALengthSqd) < toleranceSqd) {
                SkPoint b = p[0] + ab;
                SkPoint c = p[3] + dc;
                SkPoint mid = b + c;
                mid.scale(SK_ScalarHalf);
                // Insert two quadratics to cover the case when ab points away from d and/or dc
                // points away from a.
                if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) {
                    SkPoint* qpts = quads->push_back_n(6);
                    qpts[0] = p[0];
                    qpts[1] = b;
                    qpts[2] = mid;
                    qpts[3] = mid;
                    qpts[4] = c;
                    qpts[5] = p[3];
                } else {
                    SkPoint* qpts = quads->push_back_n(3);
                    qpts[0] = p[0];
                    qpts[1] = mid;
                    qpts[2] = p[3];
                }
                return;
            }
        }
    }

    static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
    static const int kMaxSubdivs = 10;

    ab.scale(kLengthScale);
    dc.scale(kLengthScale);

    // e0 and e1 are extrapolations along vectors ab and dc.
    SkVector c0 = p[0];
    c0 += ab;
    SkVector c1 = p[3];
    c1 += dc;

    SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : c0.distanceToSqd(c1);
    if (dSqd < toleranceSqd) {
        SkPoint cAvg = c0;
        cAvg += c1;
        cAvg.scale(SK_ScalarHalf);

        bool subdivide = false;

        if (constrainWithinTangents &&
            !is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
            // choose a new cAvg that is the intersection of the two tangent lines.
            ab.setOrthog(ab);
            SkScalar z0 = -ab.dot(p[0]);
            dc.setOrthog(dc);
            SkScalar z1 = -dc.dot(p[3]);
            cAvg.fX = SkScalarMul(ab.fY, z1) - SkScalarMul(z0, dc.fY);
            cAvg.fY = SkScalarMul(z0, dc.fX) - SkScalarMul(ab.fX, z1);
            SkScalar z = SkScalarMul(ab.fX, dc.fY) - SkScalarMul(ab.fY, dc.fX);
            z = SkScalarInvert(z);
            cAvg.fX *= z;
            cAvg.fY *= z;
            if (sublevel <= kMaxSubdivs) {
                SkScalar d0Sqd = c0.distanceToSqd(cAvg);
                SkScalar d1Sqd = c1.distanceToSqd(cAvg);
                // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
                // the distances and tolerance can't be negative.
                // (d0 + d1)^2 > toleranceSqd
                // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
                SkScalar d0d1 = SkScalarSqrt(SkScalarMul(d0Sqd, d1Sqd));
                subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
            }
        }
        if (!subdivide) {
            SkPoint* pts = quads->push_back_n(3);
            pts[0] = p[0];
            pts[1] = cAvg;
            pts[2] = p[3];
            return;
        }
    }
    SkPoint choppedPts[7];
    SkChopCubicAtHalf(p, choppedPts);
    convert_noninflect_cubic_to_quads(choppedPts + 0,
                                      toleranceSqd,
                                      constrainWithinTangents,
                                      dir,
                                      quads,
                                      sublevel + 1);
    convert_noninflect_cubic_to_quads(choppedPts + 3,
                                      toleranceSqd,
                                      constrainWithinTangents,
                                      dir,
                                      quads,
                                      sublevel + 1);
}
}

void GrPathUtils::convertCubicToQuads(const GrPoint p[4],
                                      SkScalar tolScale,
                                      bool constrainWithinTangents,
                                      SkPath::Direction dir,
                                      SkTArray<SkPoint, true>* quads) {
    SkPoint chopped[10];
    int count = SkChopCubicAtInflections(p, chopped);

    // base tolerance is 1 pixel.
    static const SkScalar kTolerance = SK_Scalar1;
    const SkScalar tolSqd = SkScalarSquare(SkScalarMul(tolScale, kTolerance));

    for (int i = 0; i < count; ++i) {
        SkPoint* cubic = chopped + 3*i;
        convert_noninflect_cubic_to_quads(cubic, tolSqd, constrainWithinTangents, dir, quads);
    }

}