1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
|
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrPathUtils.h"
#include "GrPoint.h"
#include "SkGeometry.h"
GrScalar GrPathUtils::scaleToleranceToSrc(GrScalar devTol,
const GrMatrix& viewM,
const GrRect& pathBounds) {
// In order to tesselate the path we get a bound on how much the matrix can
// stretch when mapping to screen coordinates.
GrScalar stretch = viewM.getMaxStretch();
GrScalar srcTol = devTol;
if (stretch < 0) {
// take worst case mapRadius amoung four corners.
// (less than perfect)
for (int i = 0; i < 4; ++i) {
GrMatrix mat;
mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
(i < 2) ? pathBounds.fTop : pathBounds.fBottom);
mat.postConcat(viewM);
stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1));
}
}
srcTol = GrScalarDiv(srcTol, stretch);
return srcTol;
}
static const int MAX_POINTS_PER_CURVE = 1 << 10;
static const GrScalar gMinCurveTol = GrFloatToScalar(0.0001f);
uint32_t GrPathUtils::quadraticPointCount(const GrPoint points[],
GrScalar tol) {
if (tol < gMinCurveTol) {
tol = gMinCurveTol;
}
GrAssert(tol > 0);
GrScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]);
if (d <= tol) {
return 1;
} else {
// Each time we subdivide, d should be cut in 4. So we need to
// subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
// points.
// 2^(log4(x)) = sqrt(x);
int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol)));
int pow2 = GrNextPow2(temp);
// Because of NaNs & INFs we can wind up with a degenerate temp
// such that pow2 comes out negative. Also, our point generator
// will always output at least one pt.
if (pow2 < 1) {
pow2 = 1;
}
return GrMin(pow2, MAX_POINTS_PER_CURVE);
}
}
uint32_t GrPathUtils::generateQuadraticPoints(const GrPoint& p0,
const GrPoint& p1,
const GrPoint& p2,
GrScalar tolSqd,
GrPoint** points,
uint32_t pointsLeft) {
if (pointsLeft < 2 ||
(p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) {
(*points)[0] = p2;
*points += 1;
return 1;
}
GrPoint q[] = {
{ GrScalarAve(p0.fX, p1.fX), GrScalarAve(p0.fY, p1.fY) },
{ GrScalarAve(p1.fX, p2.fX), GrScalarAve(p1.fY, p2.fY) },
};
GrPoint r = { GrScalarAve(q[0].fX, q[1].fX), GrScalarAve(q[0].fY, q[1].fY) };
pointsLeft >>= 1;
uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
return a + b;
}
uint32_t GrPathUtils::cubicPointCount(const GrPoint points[],
GrScalar tol) {
if (tol < gMinCurveTol) {
tol = gMinCurveTol;
}
GrAssert(tol > 0);
GrScalar d = GrMax(
points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]),
points[2].distanceToLineSegmentBetweenSqd(points[0], points[3]));
d = SkScalarSqrt(d);
if (d <= tol) {
return 1;
} else {
int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol)));
int pow2 = GrNextPow2(temp);
// Because of NaNs & INFs we can wind up with a degenerate temp
// such that pow2 comes out negative. Also, our point generator
// will always output at least one pt.
if (pow2 < 1) {
pow2 = 1;
}
return GrMin(pow2, MAX_POINTS_PER_CURVE);
}
}
uint32_t GrPathUtils::generateCubicPoints(const GrPoint& p0,
const GrPoint& p1,
const GrPoint& p2,
const GrPoint& p3,
GrScalar tolSqd,
GrPoint** points,
uint32_t pointsLeft) {
if (pointsLeft < 2 ||
(p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd &&
p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) {
(*points)[0] = p3;
*points += 1;
return 1;
}
GrPoint q[] = {
{ GrScalarAve(p0.fX, p1.fX), GrScalarAve(p0.fY, p1.fY) },
{ GrScalarAve(p1.fX, p2.fX), GrScalarAve(p1.fY, p2.fY) },
{ GrScalarAve(p2.fX, p3.fX), GrScalarAve(p2.fY, p3.fY) }
};
GrPoint r[] = {
{ GrScalarAve(q[0].fX, q[1].fX), GrScalarAve(q[0].fY, q[1].fY) },
{ GrScalarAve(q[1].fX, q[2].fX), GrScalarAve(q[1].fY, q[2].fY) }
};
GrPoint s = { GrScalarAve(r[0].fX, r[1].fX), GrScalarAve(r[0].fY, r[1].fY) };
pointsLeft >>= 1;
uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
return a + b;
}
int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths,
GrScalar tol) {
if (tol < gMinCurveTol) {
tol = gMinCurveTol;
}
GrAssert(tol > 0);
int pointCount = 0;
*subpaths = 1;
bool first = true;
SkPath::Iter iter(path, false);
GrPathCmd cmd;
GrPoint pts[4];
while ((cmd = (GrPathCmd)iter.next(pts)) != kEnd_PathCmd) {
switch (cmd) {
case kLine_PathCmd:
pointCount += 1;
break;
case kQuadratic_PathCmd:
pointCount += quadraticPointCount(pts, tol);
break;
case kCubic_PathCmd:
pointCount += cubicPointCount(pts, tol);
break;
case kMove_PathCmd:
pointCount += 1;
if (!first) {
++(*subpaths);
}
break;
default:
break;
}
first = false;
}
return pointCount;
}
void GrPathUtils::QuadUVMatrix::set(const GrPoint qPts[3]) {
// can't make this static, no cons :(
SkMatrix UVpts;
#ifndef SK_SCALAR_IS_FLOAT
GrCrash("Expected scalar is float.");
#endif
SkMatrix m;
// We want M such that M * xy_pt = uv_pt
// We know M * control_pts = [0 1/2 1]
// [0 0 1]
// [1 1 1]
// We invert the control pt matrix and post concat to both sides to get M.
UVpts.setAll(0, 0.5f, 1.f,
0, 0, 1.f,
1.f, 1.f, 1.f);
m.setAll(qPts[0].fX, qPts[1].fX, qPts[2].fX,
qPts[0].fY, qPts[1].fY, qPts[2].fY,
1.f, 1.f, 1.f);
if (!m.invert(&m)) {
// The quad is degenerate. Hopefully this is rare. Find the pts that are
// farthest apart to compute a line (unless it is really a pt).
SkScalar maxD = qPts[0].distanceToSqd(qPts[1]);
int maxEdge = 0;
SkScalar d = qPts[1].distanceToSqd(qPts[2]);
if (d > maxD) {
maxD = d;
maxEdge = 1;
}
d = qPts[2].distanceToSqd(qPts[0]);
if (d > maxD) {
maxD = d;
maxEdge = 2;
}
// We could have a tolerance here, not sure if it would improve anything
if (maxD > 0) {
// Set the matrix to give (u = 0, v = distance_to_line)
GrVec lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
// when looking from the point 0 down the line we want positive
// distances to be to the left. This matches the non-degenerate
// case.
lineVec.setOrthog(lineVec, GrPoint::kLeft_Side);
lineVec.dot(qPts[0]);
// first row
fM[0] = 0;
fM[1] = 0;
fM[2] = 0;
// second row
fM[3] = lineVec.fX;
fM[4] = lineVec.fY;
fM[5] = -lineVec.dot(qPts[maxEdge]);
} else {
// It's a point. It should cover zero area. Just set the matrix such
// that (u, v) will always be far away from the quad.
fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
}
} else {
m.postConcat(UVpts);
// The matrix should not have perspective.
static const GrScalar gTOL = 1.f / 100.f;
GrAssert(GrScalarAbs(m.get(SkMatrix::kMPersp0)) < gTOL);
GrAssert(GrScalarAbs(m.get(SkMatrix::kMPersp1)) < gTOL);
// It may not be normalized to have 1.0 in the bottom right
float m33 = m.get(SkMatrix::kMPersp2);
if (1.f != m33) {
m33 = 1.f / m33;
fM[0] = m33 * m.get(SkMatrix::kMScaleX);
fM[1] = m33 * m.get(SkMatrix::kMSkewX);
fM[2] = m33 * m.get(SkMatrix::kMTransX);
fM[3] = m33 * m.get(SkMatrix::kMSkewY);
fM[4] = m33 * m.get(SkMatrix::kMScaleY);
fM[5] = m33 * m.get(SkMatrix::kMTransY);
} else {
fM[0] = m.get(SkMatrix::kMScaleX);
fM[1] = m.get(SkMatrix::kMSkewX);
fM[2] = m.get(SkMatrix::kMTransX);
fM[3] = m.get(SkMatrix::kMSkewY);
fM[4] = m.get(SkMatrix::kMScaleY);
fM[5] = m.get(SkMatrix::kMTransY);
}
}
}
namespace {
void convert_noninflect_cubic_to_quads(const SkPoint p[4],
SkScalar tolScale,
SkTArray<SkPoint, true>* quads,
int sublevel = 0) {
SkVector ab = p[1];
ab -= p[0];
SkVector dc = p[2];
dc -= p[3];
static const SkScalar gLengthScale = 3 * SK_Scalar1 / 2;
// base tolerance is 2 pixels in dev coords.
const SkScalar distanceSqdTol = SkScalarMul(tolScale, 1 * SK_Scalar1);
static const int kMaxSubdivs = 10;
ab.scale(gLengthScale);
dc.scale(gLengthScale);
SkVector c0 = p[0];
c0 += ab;
SkVector c1 = p[3];
c1 += dc;
SkScalar dSqd = c0.distanceToSqd(c1);
if (sublevel > kMaxSubdivs || dSqd <= distanceSqdTol) {
SkPoint cAvg = c0;
cAvg += c1;
cAvg.scale(SK_ScalarHalf);
SkPoint* pts = quads->push_back_n(3);
pts[0] = p[0];
pts[1] = cAvg;
pts[2] = p[3];
return;
} else {
SkPoint choppedPts[7];
SkChopCubicAtHalf(p, choppedPts);
convert_noninflect_cubic_to_quads(choppedPts + 0, tolScale,
quads, sublevel + 1);
convert_noninflect_cubic_to_quads(choppedPts + 3, tolScale,
quads, sublevel + 1);
}
}
}
void GrPathUtils::convertCubicToQuads(const GrPoint p[4],
SkScalar tolScale,
SkTArray<SkPoint, true>* quads) {
SkPoint chopped[10];
int count = SkChopCubicAtInflections(p, chopped);
for (int i = 0; i < count; ++i) {
SkPoint* cubic = chopped + 3*i;
convert_noninflect_cubic_to_quads(cubic, tolScale, quads);
}
}
|