1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrPath.h"
namespace {
// Verb count limit for generating path key from content of a volatile path.
// The value should accomodate at least simple rects and rrects.
static const int kSimpleVolatilePathVerbLimit = 10;
inline static bool compute_key_for_line_path(const SkPath& path, const GrStrokeInfo& stroke,
GrUniqueKey* key) {
SkPoint pts[2];
if (!path.isLine(pts)) {
return false;
}
static_assert((sizeof(pts) % sizeof(uint32_t)) == 0 && sizeof(pts) > sizeof(uint32_t),
"pts_needs_padding");
const int kBaseData32Cnt = 1 + sizeof(pts) / sizeof(uint32_t);
int strokeDataCnt = stroke.computeUniqueKeyFragmentData32Cnt();
static const GrUniqueKey::Domain kOvalPathDomain = GrUniqueKey::GenerateDomain();
GrUniqueKey::Builder builder(key, kOvalPathDomain, kBaseData32Cnt + strokeDataCnt);
builder[0] = path.getFillType();
memcpy(&builder[1], &pts, sizeof(pts));
if (strokeDataCnt > 0) {
stroke.asUniqueKeyFragment(&builder[kBaseData32Cnt]);
}
return true;
}
inline static bool compute_key_for_oval_path(const SkPath& path, const GrStrokeInfo& stroke,
GrUniqueKey* key) {
SkRect rect;
// Point order is significant when dashing, so we cannot devolve to a rect key.
if (stroke.isDashed() || !path.isOval(&rect)) {
return false;
}
static_assert((sizeof(rect) % sizeof(uint32_t)) == 0 && sizeof(rect) > sizeof(uint32_t),
"rect_needs_padding");
const int kBaseData32Cnt = 1 + sizeof(rect) / sizeof(uint32_t);
int strokeDataCnt = stroke.computeUniqueKeyFragmentData32Cnt();
static const GrUniqueKey::Domain kOvalPathDomain = GrUniqueKey::GenerateDomain();
GrUniqueKey::Builder builder(key, kOvalPathDomain, kBaseData32Cnt + strokeDataCnt);
builder[0] = path.getFillType();
memcpy(&builder[1], &rect, sizeof(rect));
if (strokeDataCnt > 0) {
stroke.asUniqueKeyFragment(&builder[kBaseData32Cnt]);
}
return true;
}
// Encodes the full path data to the unique key for very small, volatile paths. This is typically
// hit when clipping stencils the clip stack. Intention is that this handles rects too, since
// SkPath::isRect seems to do non-trivial amount of work.
inline static bool compute_key_for_simple_path(const SkPath& path, const GrStrokeInfo& stroke,
GrUniqueKey* key) {
if (!path.isVolatile()) {
return false;
}
// The check below should take care of negative values casted positive.
const int verbCnt = path.countVerbs();
if (verbCnt > kSimpleVolatilePathVerbLimit) {
return false;
}
// If somebody goes wild with the constant, it might cause an overflow.
static_assert(kSimpleVolatilePathVerbLimit <= 100,
"big_simple_volatile_path_verb_limit_may_cause_overflow");
const int pointCnt = path.countPoints();
if (pointCnt < 0) {
SkASSERT(false);
return false;
}
SkSTArray<16, SkScalar, true> conicWeights(16);
if ((path.getSegmentMasks() & SkPath::kConic_SegmentMask) != 0) {
SkPath::RawIter iter(path);
SkPath::Verb verb;
SkPoint points[4];
while ((verb = iter.next(points)) != SkPath::kDone_Verb) {
if (verb == SkPath::kConic_Verb) {
conicWeights.push_back(iter.conicWeight());
}
}
}
const int conicWeightCnt = conicWeights.count();
// Construct counts that align as uint32_t counts.
#define ARRAY_DATA32_COUNT(array_type, count) \
static_cast<int>((((count) * sizeof(array_type) + sizeof(uint32_t) - 1) / sizeof(uint32_t)))
const int verbData32Cnt = ARRAY_DATA32_COUNT(uint8_t, verbCnt);
const int pointData32Cnt = ARRAY_DATA32_COUNT(SkPoint, pointCnt);
const int conicWeightData32Cnt = ARRAY_DATA32_COUNT(SkScalar, conicWeightCnt);
#undef ARRAY_DATA32_COUNT
// The unique key data is a "message" with following fragments:
// 0) domain, key length, uint32_t for fill type and uint32_t for verbCnt
// (fragment 0, fixed size)
// 1) verb, point data and conic weights (varying size)
// 2) stroke data (varying size)
const int baseData32Cnt = 2 + verbData32Cnt + pointData32Cnt + conicWeightData32Cnt;
const int strokeDataCnt = stroke.computeUniqueKeyFragmentData32Cnt();
static const GrUniqueKey::Domain kSimpleVolatilePathDomain = GrUniqueKey::GenerateDomain();
GrUniqueKey::Builder builder(key, kSimpleVolatilePathDomain, baseData32Cnt + strokeDataCnt);
int i = 0;
builder[i++] = path.getFillType();
// Serialize the verbCnt to make the whole message unambiguous.
// We serialize two variable length fragments to the message:
// * verbs, point data and conic weights (fragment 1)
// * stroke data (fragment 2)
// "Proof:"
// Verb count establishes unambiguous verb data.
// Verbs encode also point data size and conic weight size.
// Thus the fragment 1 is unambiguous.
// Unambiguous fragment 1 establishes unambiguous fragment 2, since the length of the message
// has been established.
builder[i++] = SkToU32(verbCnt); // The path limit is compile-asserted above, so the cast is ok.
// Fill the last uint32_t with 0 first, since the last uint8_ts of the uint32_t may be
// uninitialized. This does not produce ambiguous verb data, since we have serialized the exact
// verb count.
if (verbData32Cnt != static_cast<int>((verbCnt * sizeof(uint8_t) / sizeof(uint32_t)))) {
builder[i + verbData32Cnt - 1] = 0;
}
path.getVerbs(reinterpret_cast<uint8_t*>(&builder[i]), verbCnt);
i += verbData32Cnt;
static_assert(((sizeof(SkPoint) % sizeof(uint32_t)) == 0) && sizeof(SkPoint) > sizeof(uint32_t),
"skpoint_array_needs_padding");
// Here we assume getPoints does a memcpy, so that we do not need to worry about the alignment.
path.getPoints(reinterpret_cast<SkPoint*>(&builder[i]), pointCnt);
i += pointData32Cnt;
if (conicWeightCnt > 0) {
if (conicWeightData32Cnt != static_cast<int>(
(conicWeightCnt * sizeof(SkScalar) / sizeof(uint32_t)))) {
builder[i + conicWeightData32Cnt - 1] = 0;
}
memcpy(&builder[i], conicWeights.begin(), conicWeightCnt * sizeof(SkScalar));
SkDEBUGCODE(i += conicWeightData32Cnt);
}
SkASSERT(i == baseData32Cnt);
if (strokeDataCnt > 0) {
stroke.asUniqueKeyFragment(&builder[baseData32Cnt]);
}
return true;
}
inline static void compute_key_for_general_path(const SkPath& path, const GrStrokeInfo& stroke,
GrUniqueKey* key) {
const int kBaseData32Cnt = 2;
int strokeDataCnt = stroke.computeUniqueKeyFragmentData32Cnt();
static const GrUniqueKey::Domain kGeneralPathDomain = GrUniqueKey::GenerateDomain();
GrUniqueKey::Builder builder(key, kGeneralPathDomain, kBaseData32Cnt + strokeDataCnt);
builder[0] = path.getGenerationID();
builder[1] = path.getFillType();
if (strokeDataCnt > 0) {
stroke.asUniqueKeyFragment(&builder[kBaseData32Cnt]);
}
}
}
void GrPath::ComputeKey(const SkPath& path, const GrStrokeInfo& stroke, GrUniqueKey* key,
bool* outIsVolatile) {
if (compute_key_for_line_path(path, stroke, key)) {
*outIsVolatile = false;
return;
}
if (compute_key_for_oval_path(path, stroke, key)) {
*outIsVolatile = false;
return;
}
if (compute_key_for_simple_path(path, stroke, key)) {
*outIsVolatile = false;
return;
}
compute_key_for_general_path(path, stroke, key);
*outIsVolatile = path.isVolatile();
}
#ifdef SK_DEBUG
bool GrPath::isEqualTo(const SkPath& path, const GrStrokeInfo& stroke) const {
if (!fStroke.hasEqualEffect(stroke)) {
return false;
}
// We treat same-rect ovals as identical - but only when not dashing.
SkRect ovalBounds;
if (!fStroke.isDashed() && fSkPath.isOval(&ovalBounds)) {
SkRect otherOvalBounds;
return path.isOval(&otherOvalBounds) && ovalBounds == otherOvalBounds;
}
return fSkPath == path;
}
#endif
|