aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/GrOptDrawState.h
blob: 1c439bbff132e2d55fa822609f211d3e2bb73a00 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
/*
 * Copyright 2014 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef GrOptDrawState_DEFINED
#define GrOptDrawState_DEFINED

#include "GrColor.h"
#include "GrGpu.h"
#include "GrProcessorStage.h"
#include "GrStencil.h"
#include "GrTypesPriv.h"
#include "SkMatrix.h"
#include "SkRefCnt.h"

class GrDrawState;

/**
 * Class that holds an optimized version of a GrDrawState. It is meant to be an immutable class,
 * and contains all data needed to set the state for a gpu draw.
 */
class GrOptDrawState : public SkRefCnt {
public:
    /**
     * Returns a snapshot of the current optimized state. If the current drawState has a valid
     * cached optimiezed state it will simply return a pointer to it otherwise it will create a new
     * GrOptDrawState. In all cases the GrOptDrawState is reffed and ownership is given to the
     * caller.
     */
    static GrOptDrawState* Create(const GrDrawState& drawState, const GrDrawTargetCaps& caps,
                                  GrGpu::DrawType drawType);

    bool operator== (const GrOptDrawState& that) const;

    ///////////////////////////////////////////////////////////////////////////
    /// @name Vertex Attributes
    ////

    enum {
        kMaxVertexAttribCnt = kLast_GrVertexAttribBinding + 4,
    };

    const GrVertexAttrib* getVertexAttribs() const { return fVAPtr; }
    int getVertexAttribCount() const { return fVACount; }

    size_t getVertexStride() const { return fVAStride; }

    /**
     * Getters for index into getVertexAttribs() for particular bindings. -1 is returned if the
     * binding does not appear in the current attribs. These bindings should appear only once in
     * the attrib array.
     */

    int positionAttributeIndex() const {
        return fFixedFunctionVertexAttribIndices[kPosition_GrVertexAttribBinding];
    }
    int localCoordAttributeIndex() const {
        return fFixedFunctionVertexAttribIndices[kLocalCoord_GrVertexAttribBinding];
    }
    int colorVertexAttributeIndex() const {
        return fFixedFunctionVertexAttribIndices[kColor_GrVertexAttribBinding];
    }
    int coverageVertexAttributeIndex() const {
        return fFixedFunctionVertexAttribIndices[kCoverage_GrVertexAttribBinding];
    }

    bool hasLocalCoordAttribute() const {
        return -1 != fFixedFunctionVertexAttribIndices[kLocalCoord_GrVertexAttribBinding];
    }
    bool hasColorVertexAttribute() const {
        return -1 != fFixedFunctionVertexAttribIndices[kColor_GrVertexAttribBinding];
    }
    bool hasCoverageVertexAttribute() const {
        return -1 != fFixedFunctionVertexAttribIndices[kCoverage_GrVertexAttribBinding];
    }

    /// @}

    ///////////////////////////////////////////////////////////////////////////
    /// @name Color
    ////

    GrColor getColor() const { return fColor; }

    /// @}

    ///////////////////////////////////////////////////////////////////////////
    /// @name Coverage
    ////

    uint8_t getCoverage() const { return fCoverage; }

    GrColor getCoverageColor() const {
        return GrColorPackRGBA(fCoverage, fCoverage, fCoverage, fCoverage);
    }

    /// @}

    ///////////////////////////////////////////////////////////////////////////
    /// @name Effect Stages
    /// Each stage hosts a GrProcessor. The effect produces an output color or coverage in the
    /// fragment shader. Its inputs are the output from the previous stage as well as some variables
    /// available to it in the fragment and vertex shader (e.g. the vertex position, the dst color,
    /// the fragment position, local coordinates).
    ///
    /// The stages are divided into two sets, color-computing and coverage-computing. The final
    /// color stage produces the final pixel color. The coverage-computing stages function exactly
    /// as the color-computing but the output of the final coverage stage is treated as a fractional
    /// pixel coverage rather than as input to the src/dst color blend step.
    ///
    /// The input color to the first color-stage is either the constant color or interpolated
    /// per-vertex colors. The input to the first coverage stage is either a constant coverage
    /// (usually full-coverage) or interpolated per-vertex coverage.
    ///
    /// See the documentation of kCoverageDrawing_StateBit for information about disabling the
    /// the color / coverage distinction.
    ////

    int numColorStages() const { return fNumColorStages; }
    int numCoverageStages() const { return fFragmentStages.count() - fNumColorStages; }
    int numFragmentStages() const { return fFragmentStages.count(); }
    int numTotalStages() const {
         return this->numFragmentStages() + (this->hasGeometryProcessor() ? 1 : 0);
    }

    bool hasGeometryProcessor() const { return SkToBool(fGeometryProcessor.get()); }
    const GrGeometryStage* getGeometryProcessor() const { return fGeometryProcessor.get(); }
    const GrFragmentStage& getColorStage(int idx) const {
        SkASSERT(idx < this->numColorStages());
        return fFragmentStages[idx];
    }
    const GrFragmentStage& getCoverageStage(int idx) const {
        SkASSERT(idx < this->numCoverageStages());
        return fFragmentStages[fNumColorStages + idx];
    }
    const GrFragmentStage& getFragmentStage(int idx) const { return fFragmentStages[idx]; }

    /// @}

    ///////////////////////////////////////////////////////////////////////////
    /// @name Blending
    ////

    GrBlendCoeff getSrcBlendCoeff() const { return fSrcBlend; }
    GrBlendCoeff getDstBlendCoeff() const { return fDstBlend; }

    /**
     * Retrieves the last value set by setBlendConstant()
     * @return the blending constant value
     */
    GrColor getBlendConstant() const { return fBlendConstant; }

    /// @}

    ///////////////////////////////////////////////////////////////////////////
    /// @name View Matrix
    ////

    /**
     * Retrieves the current view matrix
     * @return the current view matrix.
     */
    const SkMatrix& getViewMatrix() const { return fViewMatrix; }

    /**
     *  Retrieves the inverse of the current view matrix.
     *
     *  If the current view matrix is invertible, return true, and if matrix
     *  is non-null, copy the inverse into it. If the current view matrix is
     *  non-invertible, return false and ignore the matrix parameter.
     *
     * @param matrix if not null, will receive a copy of the current inverse.
     */
    bool getViewInverse(SkMatrix* matrix) const {
        SkMatrix inverse;
        if (fViewMatrix.invert(&inverse)) {
            if (matrix) {
                *matrix = inverse;
            }
            return true;
        }
        return false;
    }

    /// @}

    ///////////////////////////////////////////////////////////////////////////
    /// @name Render Target
    ////

    /**
     * Retrieves the currently set render-target.
     *
     * @return    The currently set render target.
     */
    GrRenderTarget* getRenderTarget() const {
        return static_cast<GrRenderTarget*>(fRenderTarget.getResource());
    }

    /// @}

    ///////////////////////////////////////////////////////////////////////////
    /// @name Stencil
    ////

    const GrStencilSettings& getStencil() const { return fStencilSettings; }

    /// @}

    ///////////////////////////////////////////////////////////////////////////
    /// @name State Flags
    ////

    /**
     *  Flags that affect rendering. Controlled using enable/disableState(). All
     *  default to disabled.
     */
    enum StateBits {
        /**
         * Perform dithering. TODO: Re-evaluate whether we need this bit
         */
        kDither_StateBit        = 0x01,
        /**
         * Perform HW anti-aliasing. This means either HW FSAA, if supported by the render target,
         * or smooth-line rendering if a line primitive is drawn and line smoothing is supported by
         * the 3D API.
         */
        kHWAntialias_StateBit   = 0x02,
        /**
         * Draws will respect the clip, otherwise the clip is ignored.
         */
        kClip_StateBit          = 0x04,
        /**
         * Disables writing to the color buffer. Useful when performing stencil
         * operations.
         */
        kNoColorWrites_StateBit = 0x08,

        /**
         * Usually coverage is applied after color blending. The color is blended using the coeffs
         * specified by setBlendFunc(). The blended color is then combined with dst using coeffs
         * of src_coverage, 1-src_coverage. Sometimes we are explicitly drawing a coverage mask. In
         * this case there is no distinction between coverage and color and the caller needs direct
         * control over the blend coeffs. When set, there will be a single blend step controlled by
         * setBlendFunc() which will use coverage*color as the src color.
         */
         kCoverageDrawing_StateBit = 0x10,

        // Users of the class may add additional bits to the vector
        kDummyStateBit,
        kLastPublicStateBit = kDummyStateBit-1,
    };

    bool isStateFlagEnabled(uint32_t stateBit) const { return 0 != (stateBit & fFlagBits); }

    bool isDitherState() const { return 0 != (fFlagBits & kDither_StateBit); }
    bool isHWAntialiasState() const { return 0 != (fFlagBits & kHWAntialias_StateBit); }
    bool isClipState() const { return 0 != (fFlagBits & kClip_StateBit); }
    bool isColorWriteDisabled() const { return 0 != (fFlagBits & kNoColorWrites_StateBit); }
    bool isCoverageDrawing() const { return 0 != (fFlagBits & kCoverageDrawing_StateBit); }

    /// @}

    ///////////////////////////////////////////////////////////////////////////
    /// @name Face Culling
    ////

    enum DrawFace {
        kInvalid_DrawFace = -1,

        kBoth_DrawFace,
        kCCW_DrawFace,
        kCW_DrawFace,
    };

    /**
     * Gets whether the target is drawing clockwise, counterclockwise,
     * or both faces.
     * @return the current draw face(s).
     */
    DrawFace getDrawFace() const { return fDrawFace; }

    /// @}

    ///////////////////////////////////////////////////////////////////////////

    /** Return type for CombineIfPossible. */
    enum CombinedState {
        /** The GrDrawStates cannot be combined. */
        kIncompatible_CombinedState,
        /** Either draw state can be used in place of the other. */
        kAOrB_CombinedState,
        /** Use the first draw state. */
        kA_CombinedState,
        /** Use the second draw state. */
        kB_CombinedState,
    };

    bool inputColorIsUsed() const { return fInputColorIsUsed; }
    bool inputCoverageIsUsed() const { return fInputCoverageIsUsed; }

    bool readsDst() const { return fReadsDst; }
    bool readsFragPosition() const { return fReadsFragPosition; }
    bool requiresLocalCoordAttrib() const { return fRequiresLocalCoordAttrib; }

    ///////////////////////////////////////////////////////////////////////////
    /// @name Stage Output Types
    ////

    enum PrimaryOutputType {
        // Modulate color and coverage, write result as the color output.
        kModulate_PrimaryOutputType,
        // Combines the coverage, dst, and color as coverage * color + (1 - coverage) * dst. This
        // can only be set if fDstReadKey is non-zero.
        kCombineWithDst_PrimaryOutputType,

        kPrimaryOutputTypeCnt,
    };

    enum SecondaryOutputType {
        // There is no secondary output
        kNone_SecondaryOutputType,
        // Writes coverage as the secondary output. Only set if dual source blending is supported
        // and primary output is kModulate.
        kCoverage_SecondaryOutputType,
        // Writes coverage * (1 - colorA) as the secondary output. Only set if dual source blending
        // is supported and primary output is kModulate.
        kCoverageISA_SecondaryOutputType,
        // Writes coverage * (1 - colorRGBA) as the secondary output. Only set if dual source
        // blending is supported and primary output is kModulate.
        kCoverageISC_SecondaryOutputType,

        kSecondaryOutputTypeCnt,
    };

    PrimaryOutputType getPrimaryOutputType() const { return fPrimaryOutputType; }
    SecondaryOutputType getSecondaryOutputType() const { return fSecondaryOutputType; }

    /// @}

private:
    /**
     * Optimizations for blending / coverage to that can be applied based on the current state.
     */
    enum BlendOptFlags {
        /**
         * No optimization
         */
        kNone_BlendOpt                  = 0,
        /**
         * Don't draw at all
         */
        kSkipDraw_BlendOptFlag          = 0x1,
        /**
         * The coverage value does not have to be computed separately from alpha, the the output
         * color can be the modulation of the two.
         */
        kCoverageAsAlpha_BlendOptFlag   = 0x2,
        /**
         * Instead of emitting a src color, emit coverage in the alpha channel and r,g,b are
         * "don't cares".
         */
        kEmitCoverage_BlendOptFlag      = 0x4,
        /**
         * Emit transparent black instead of the src color, no need to compute coverage.
         */
        kEmitTransBlack_BlendOptFlag    = 0x8,
    };
    GR_DECL_BITFIELD_OPS_FRIENDS(BlendOptFlags);

    /**
     * Constructs and optimized drawState out of a GrRODrawState.
     */
    GrOptDrawState(const GrDrawState& drawState, BlendOptFlags blendOptFlags,
                   GrBlendCoeff optSrcCoeff, GrBlendCoeff optDstCoeff,
                   const GrDrawTargetCaps& caps);

    /**
     * Loops through all the color stage effects to check if the stage will ignore color input or
     * always output a constant color. In the ignore color input case we can ignore all previous
     * stages. In the constant color case, we can ignore all previous stages and
     * the current one and set the state color to the constant color.
     */
    void computeEffectiveColorStages(const GrDrawState& ds, int* firstColorStageIdx,
                                     uint8_t* fixFunctionVAToRemove);

    /**
     * Loops through all the coverage stage effects to check if the stage will ignore color input.
     * If a coverage stage will ignore input, then we can ignore all coverage stages before it. We
     * loop to determine the first effective coverage stage.
     */
    void computeEffectiveCoverageStages(const GrDrawState& ds, int* firstCoverageStageIdx);

    /**
     * This function takes in a flag and removes the corresponding fixed function vertex attributes.
     * The flags are in the same order as GrVertexAttribBinding array. If bit i of removeVAFlags is
     * set, then vertex attributes with binding (GrVertexAttribute)i will be removed.
     */
    void removeFixedFunctionVertexAttribs(uint8_t removeVAFlags);

    /**
     * Alter the OptDrawState (adjusting stages, vertex attribs, flags, etc.) based on the
     * BlendOptFlags.
     */
    void adjustFromBlendOpts(const GrDrawState& ds, int* firstColorStageIdx,
                             int* firstCoverageStageIdx, uint8_t* fixedFunctionVAToRemove);

    /**
     * Loop over the effect stages to determine various info like what data they will read and what
     * shaders they require.
     */
    void getStageStats(const GrDrawState& ds, int firstColorStageIdx, int firstCoverageStageIdx);

    /**
     * Calculates the primary and secondary output types of the shader. For certain output types
     * the function may adjust the blend coefficients. After this function is called the src and dst
     * blend coeffs will represent those used by backend API.
     */
    void setOutputStateInfo(const GrDrawState& ds, const GrDrawTargetCaps&,
                            int firstCoverageStageIdx, bool* separateCoverageFromColor);

    bool isEqual(const GrOptDrawState& that) const;

    // These fields are roughly sorted by decreasing likelihood of being different in op==
    typedef GrTGpuResourceRef<GrRenderTarget> ProgramRenderTarget;
    ProgramRenderTarget                 fRenderTarget;
    GrColor                             fColor;
    SkMatrix                            fViewMatrix;
    GrColor                             fBlendConstant;
    uint32_t                            fFlagBits;
    const GrVertexAttrib*               fVAPtr;
    int                                 fVACount;
    size_t                              fVAStride;
    GrStencilSettings                   fStencilSettings;
    uint8_t                             fCoverage;
    DrawFace                            fDrawFace;
    GrBlendCoeff                        fSrcBlend;
    GrBlendCoeff                        fDstBlend;

    typedef SkSTArray<8, GrFragmentStage> FragmentStageArray;
    SkAutoTDelete<GrGeometryStage>        fGeometryProcessor;
    FragmentStageArray                    fFragmentStages;

    // This function is equivalent to the offset into fFragmentStages where coverage stages begin.
    int                                   fNumColorStages;

    // This is simply a different representation of info in fVertexAttribs and thus does
    // not need to be compared in op==.
    int fFixedFunctionVertexAttribIndices[kGrFixedFunctionVertexAttribBindingCnt];

    // These flags are needed to protect the code from creating an unused uniform color/coverage
    // which will cause shader compiler errors.
    bool            fInputColorIsUsed;
    bool            fInputCoverageIsUsed;

    // These flags give aggregated info on the effect stages that are used when building programs.
    bool            fReadsDst;
    bool            fReadsFragPosition;
    bool            fRequiresLocalCoordAttrib;

    SkAutoSTArray<4, GrVertexAttrib> fOptVA;

    BlendOptFlags   fBlendOptFlags;

    // Fragment shader color outputs
    PrimaryOutputType  fPrimaryOutputType : 8;
    SecondaryOutputType  fSecondaryOutputType : 8;

    typedef SkRefCnt INHERITED;
};

GR_MAKE_BITFIELD_OPS(GrOptDrawState::BlendOptFlags);

#endif