1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
|
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrOptDrawState.h"
#include "GrDefaultGeoProcFactory.h"
#include "GrDrawState.h"
#include "GrDrawTargetCaps.h"
#include "GrGpu.h"
#include "GrProcOptInfo.h"
GrOptDrawState::GrOptDrawState(const GrDrawState& drawState,
GrDrawState::BlendOpt blendOpt,
GrBlendCoeff optSrcCoeff,
GrBlendCoeff optDstCoeff,
GrGpu* gpu,
const ScissorState& scissorState,
const GrDeviceCoordTexture* dstCopy,
GrGpu::DrawType drawType)
: fRenderTarget(drawState.fRenderTarget.get()) {
fScissorState = scissorState;
fViewMatrix = drawState.getViewMatrix();
fBlendConstant = drawState.getBlendConstant();
fVAPtr = drawState.getVertexAttribs();
fVACount = drawState.getVertexAttribCount();
fVAStride = drawState.getVertexStride();
fStencilSettings = drawState.getStencil();
fDrawFace = drawState.getDrawFace();
fSrcBlend = optSrcCoeff;
fDstBlend = optDstCoeff;
// TODO move this out of optDrawState
if (dstCopy) {
fDstCopy = *dstCopy;
}
GrProgramDesc::DescInfo descInfo;
fFlags = 0;
if (drawState.isHWAntialias()) {
fFlags |= kHWAA_Flag;
}
if (drawState.isColorWriteDisabled()) {
fFlags |= kDisableColorWrite_Flag;
}
if (drawState.isDither()) {
fFlags |= kDither_Flag;
}
memcpy(descInfo.fFixedFunctionVertexAttribIndices,
drawState.getFixedFunctionVertexAttribIndices(),
sizeof(descInfo.fFixedFunctionVertexAttribIndices));
uint8_t fixedFunctionVAToRemove = 0;
const GrProcOptInfo& colorPOI = drawState.colorProcInfo();
int firstColorStageIdx = colorPOI.firstEffectiveStageIndex();
descInfo.fInputColorIsUsed = colorPOI.inputColorIsUsed();
fColor = colorPOI.inputColorToEffectiveStage();
if (colorPOI.removeVertexAttrib()) {
fixedFunctionVAToRemove |= 0x1 << kColor_GrVertexAttribBinding;
}
// TODO: Once we can handle single or four channel input into coverage stages then we can use
// drawState's coverageProcInfo (like color above) to set this initial information.
int firstCoverageStageIdx = 0;
descInfo.fInputCoverageIsUsed = true;
fCoverage = drawState.getCoverage();
this->adjustProgramForBlendOpt(drawState, blendOpt, &descInfo, &firstColorStageIdx,
&firstCoverageStageIdx, &fixedFunctionVAToRemove);
// Should not be setting any more FFVA to be removed at this point
if (0 != fixedFunctionVAToRemove) {
this->removeFixedFunctionVertexAttribs(fixedFunctionVAToRemove, &descInfo);
}
this->getStageStats(drawState, firstColorStageIdx, firstCoverageStageIdx, &descInfo);
// Copy GeometryProcesssor from DS or ODS
SkASSERT(GrGpu::IsPathRenderingDrawType(drawType) ||
GrGpu::kStencilPath_DrawType ||
drawState.hasGeometryProcessor());
fGeometryProcessor.reset(drawState.getGeometryProcessor());
// Copy Stages from DS to ODS
bool explicitLocalCoords = descInfo.hasLocalCoordAttribute();
for (int i = firstColorStageIdx; i < drawState.numColorStages(); ++i) {
SkNEW_APPEND_TO_TARRAY(&fFragmentStages,
GrPendingFragmentStage,
(drawState.fColorStages[i], explicitLocalCoords));
}
fNumColorStages = fFragmentStages.count();
for (int i = firstCoverageStageIdx; i < drawState.numCoverageStages(); ++i) {
SkNEW_APPEND_TO_TARRAY(&fFragmentStages,
GrPendingFragmentStage,
(drawState.fCoverageStages[i], explicitLocalCoords));
}
this->setOutputStateInfo(drawState, blendOpt, *gpu->caps(), &descInfo);
// now create a key
gpu->buildProgramDesc(*this, descInfo, drawType, &fDesc);
};
GrOptDrawState* GrOptDrawState::Create(const GrDrawState& drawState,
GrGpu* gpu,
const ScissorState& scissorState,
const GrDeviceCoordTexture* dstCopy,
GrGpu::DrawType drawType) {
GrBlendCoeff srcCoeff;
GrBlendCoeff dstCoeff;
GrDrawState::BlendOpt blendOpt = drawState.getBlendOpt(false, &srcCoeff, &dstCoeff);
// If our blend coeffs are set to 0,1 we know we will not end up drawing unless we are
// stenciling. When path rendering the stencil settings are not always set on the draw state
// so we must check the draw type. In cases where we will skip drawing we simply return a
// null GrOptDrawState.
if (kZero_GrBlendCoeff == srcCoeff && kOne_GrBlendCoeff == dstCoeff &&
!drawState.getStencil().doesWrite() && GrGpu::kStencilPath_DrawType != drawType) {
return NULL;
}
return SkNEW_ARGS(GrOptDrawState, (drawState, blendOpt, srcCoeff,
dstCoeff, gpu, scissorState, dstCopy, drawType));
}
void GrOptDrawState::setOutputStateInfo(const GrDrawState& ds,
GrDrawState::BlendOpt blendOpt,
const GrDrawTargetCaps& caps,
GrProgramDesc::DescInfo* descInfo) {
// Set this default and then possibly change our mind if there is coverage.
descInfo->fPrimaryOutputType = GrProgramDesc::kModulate_PrimaryOutputType;
descInfo->fSecondaryOutputType = GrProgramDesc::kNone_SecondaryOutputType;
// Determine whether we should use dual source blending or shader code to keep coverage
// separate from color.
bool keepCoverageSeparate = !(GrDrawState::kCoverageAsAlpha_BlendOpt == blendOpt ||
GrDrawState::kEmitCoverage_BlendOpt == blendOpt);
if (keepCoverageSeparate && !ds.hasSolidCoverage()) {
if (caps.dualSourceBlendingSupport()) {
if (kZero_GrBlendCoeff == fDstBlend) {
// write the coverage value to second color
descInfo->fSecondaryOutputType = GrProgramDesc::kCoverage_SecondaryOutputType;
fDstBlend = (GrBlendCoeff)GrGpu::kIS2C_GrBlendCoeff;
} else if (kSA_GrBlendCoeff == fDstBlend) {
// SA dst coeff becomes 1-(1-SA)*coverage when dst is partially covered.
descInfo->fSecondaryOutputType = GrProgramDesc::kCoverageISA_SecondaryOutputType;
fDstBlend = (GrBlendCoeff)GrGpu::kIS2C_GrBlendCoeff;
} else if (kSC_GrBlendCoeff == fDstBlend) {
// SA dst coeff becomes 1-(1-SA)*coverage when dst is partially covered.
descInfo->fSecondaryOutputType = GrProgramDesc::kCoverageISC_SecondaryOutputType;
fDstBlend = (GrBlendCoeff)GrGpu::kIS2C_GrBlendCoeff;
}
} else if (descInfo->fReadsDst &&
kOne_GrBlendCoeff == fSrcBlend &&
kZero_GrBlendCoeff == fDstBlend) {
descInfo->fPrimaryOutputType = GrProgramDesc::kCombineWithDst_PrimaryOutputType;
}
}
}
void GrOptDrawState::adjustProgramForBlendOpt(const GrDrawState& ds,
GrDrawState::BlendOpt blendOpt,
GrProgramDesc::DescInfo* descInfo,
int* firstColorStageIdx,
int* firstCoverageStageIdx,
uint8_t* fixedFunctionVAToRemove) {
switch (blendOpt) {
case GrDrawState::kNone_BlendOpt:
case GrDrawState::kSkipDraw_BlendOpt:
case GrDrawState::kCoverageAsAlpha_BlendOpt:
break;
case GrDrawState::kEmitCoverage_BlendOpt:
fColor = 0xffffffff;
descInfo->fInputColorIsUsed = true;
*firstColorStageIdx = ds.numColorStages();
*fixedFunctionVAToRemove |= 0x1 << kColor_GrVertexAttribBinding;
break;
case GrDrawState::kEmitTransBlack_BlendOpt:
fColor = 0;
fCoverage = 0xff;
descInfo->fInputColorIsUsed = true;
descInfo->fInputCoverageIsUsed = true;
*firstColorStageIdx = ds.numColorStages();
*firstCoverageStageIdx = ds.numCoverageStages();
*fixedFunctionVAToRemove |= (0x1 << kColor_GrVertexAttribBinding |
0x1 << kCoverage_GrVertexAttribBinding);
break;
}
}
void GrOptDrawState::removeFixedFunctionVertexAttribs(uint8_t removeVAFlag,
GrProgramDesc::DescInfo* descInfo) {
int numToRemove = 0;
uint8_t maskCheck = 0x1;
// Count the number of vertex attributes that we will actually remove
for (int i = 0; i < kGrFixedFunctionVertexAttribBindingCnt; ++i) {
if ((maskCheck & removeVAFlag) && -1 != descInfo->fFixedFunctionVertexAttribIndices[i]) {
++numToRemove;
}
maskCheck <<= 1;
}
fOptVA.reset(fVACount - numToRemove);
GrVertexAttrib* dst = fOptVA.get();
const GrVertexAttrib* src = fVAPtr;
for (int i = 0, newIdx = 0; i < fVACount; ++i, ++src) {
const GrVertexAttrib& currAttrib = *src;
if (currAttrib.fBinding < kGrFixedFunctionVertexAttribBindingCnt) {
uint8_t maskCheck = 0x1 << currAttrib.fBinding;
if (maskCheck & removeVAFlag) {
SkASSERT(-1 != descInfo->fFixedFunctionVertexAttribIndices[currAttrib.fBinding]);
descInfo->fFixedFunctionVertexAttribIndices[currAttrib.fBinding] = -1;
continue;
}
descInfo->fFixedFunctionVertexAttribIndices[currAttrib.fBinding] = newIdx;
}
memcpy(dst, src, sizeof(GrVertexAttrib));
++newIdx;
++dst;
}
fVACount -= numToRemove;
fVAPtr = fOptVA.get();
}
static void get_stage_stats(const GrFragmentStage& stage, bool* readsDst, bool* readsFragPosition) {
if (stage.getProcessor()->willReadDstColor()) {
*readsDst = true;
}
if (stage.getProcessor()->willReadFragmentPosition()) {
*readsFragPosition = true;
}
}
void GrOptDrawState::getStageStats(const GrDrawState& ds, int firstColorStageIdx,
int firstCoverageStageIdx, GrProgramDesc::DescInfo* descInfo) {
// We will need a local coord attrib if there is one currently set on the optState and we are
// actually generating some effect code
descInfo->fRequiresLocalCoordAttrib = descInfo->hasLocalCoordAttribute() &&
ds.numTotalStages() - firstColorStageIdx - firstCoverageStageIdx > 0;
descInfo->fReadsDst = false;
descInfo->fReadsFragPosition = false;
for (int s = firstColorStageIdx; s < ds.numColorStages(); ++s) {
const GrFragmentStage& stage = ds.getColorStage(s);
get_stage_stats(stage, &descInfo->fReadsDst, &descInfo->fReadsFragPosition);
}
for (int s = firstCoverageStageIdx; s < ds.numCoverageStages(); ++s) {
const GrFragmentStage& stage = ds.getCoverageStage(s);
get_stage_stats(stage, &descInfo->fReadsDst, &descInfo->fReadsFragPosition);
}
if (ds.hasGeometryProcessor()) {
const GrGeometryProcessor& gp = *ds.getGeometryProcessor();
descInfo->fReadsFragPosition = descInfo->fReadsFragPosition || gp.willReadFragmentPosition();
}
}
////////////////////////////////////////////////////////////////////////////////
bool GrOptDrawState::operator== (const GrOptDrawState& that) const {
if (this->fDesc != that.fDesc) {
return false;
}
bool usingVertexColors = that.fDesc.header().fColorAttributeIndex != -1;
if (!usingVertexColors && this->fColor != that.fColor) {
return false;
}
if (this->getRenderTarget() != that.getRenderTarget() ||
this->fScissorState != that.fScissorState ||
!this->fViewMatrix.cheapEqualTo(that.fViewMatrix) ||
this->fSrcBlend != that.fSrcBlend ||
this->fDstBlend != that.fDstBlend ||
this->fBlendConstant != that.fBlendConstant ||
this->fFlags != that.fFlags ||
this->fVACount != that.fVACount ||
this->fVAStride != that.fVAStride ||
memcmp(this->fVAPtr, that.fVAPtr, this->fVACount * sizeof(GrVertexAttrib)) ||
this->fStencilSettings != that.fStencilSettings ||
this->fDrawFace != that.fDrawFace ||
this->fDstCopy.texture() != that.fDstCopy.texture()) {
return false;
}
bool usingVertexCoverage = this->fDesc.header().fCoverageAttributeIndex != -1;
if (!usingVertexCoverage && this->fCoverage != that.fCoverage) {
return false;
}
if (this->hasGeometryProcessor()) {
if (!that.hasGeometryProcessor()) {
return false;
} else if (!this->getGeometryProcessor()->isEqual(*that.getGeometryProcessor())) {
return false;
}
} else if (that.hasGeometryProcessor()) {
return false;
}
// The program desc comparison should have already assured that the stage counts match.
SkASSERT(this->numFragmentStages() == that.numFragmentStages());
for (int i = 0; i < this->numFragmentStages(); i++) {
if (this->getFragmentStage(i) != that.getFragmentStage(i)) {
return false;
}
}
return true;
}
|