1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
|
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrOptDrawState.h"
#include "GrDrawState.h"
#include "GrDrawTargetCaps.h"
GrOptDrawState::GrOptDrawState(const GrDrawState& drawState,
BlendOptFlags blendOptFlags,
GrBlendCoeff optSrcCoeff,
GrBlendCoeff optDstCoeff,
const GrDrawTargetCaps& caps) {
fRenderTarget.set(SkSafeRef(drawState.getRenderTarget()), kWrite_GrIOType);
fColor = drawState.getColor();
fCoverage = drawState.getCoverage();
fViewMatrix = drawState.getViewMatrix();
fBlendConstant = drawState.getBlendConstant();
fFlagBits = drawState.getFlagBits();
fVAPtr = drawState.getVertexAttribs();
fVACount = drawState.getVertexAttribCount();
fVAStride = drawState.getVertexStride();
fStencilSettings = drawState.getStencil();
fDrawFace = (DrawFace)drawState.getDrawFace();
fBlendOptFlags = blendOptFlags;
fSrcBlend = optSrcCoeff;
fDstBlend = optDstCoeff;
memcpy(fFixedFunctionVertexAttribIndices,
drawState.getFixedFunctionVertexAttribIndices(),
sizeof(fFixedFunctionVertexAttribIndices));
fInputColorIsUsed = true;
fInputCoverageIsUsed = true;
int firstColorStageIdx = 0;
int firstCoverageStageIdx = 0;
bool separateCoverageFromColor;
uint8_t fixedFunctionVAToRemove = 0;
this->computeEffectiveColorStages(drawState, &firstColorStageIdx, &fixedFunctionVAToRemove);
this->computeEffectiveCoverageStages(drawState, &firstCoverageStageIdx);
this->adjustFromBlendOpts(drawState, &firstColorStageIdx, &firstCoverageStageIdx,
&fixedFunctionVAToRemove);
// Should not be setting any more FFVA to be removed at this point
if (0 != fixedFunctionVAToRemove) {
this->removeFixedFunctionVertexAttribs(fixedFunctionVAToRemove);
}
this->getStageStats(drawState, firstColorStageIdx, firstCoverageStageIdx);
this->setOutputStateInfo(drawState, caps, firstCoverageStageIdx, &separateCoverageFromColor);
// Copy GeometryProcesssor from DS or ODS
if (drawState.hasGeometryProcessor()) {
fGeometryProcessor.initAndRef(drawState.fGeometryProcessor);
} else {
fGeometryProcessor.reset(NULL);
}
// Copy Color Stages from DS to ODS
if (firstColorStageIdx < drawState.numColorStages()) {
fFragmentStages.reset(&drawState.getColorStage(firstColorStageIdx),
drawState.numColorStages() - firstColorStageIdx);
} else {
fFragmentStages.reset();
}
fNumColorStages = fFragmentStages.count();
// Copy Coverage Stages from DS to ODS
if (firstCoverageStageIdx < drawState.numCoverageStages()) {
fFragmentStages.push_back_n(drawState.numCoverageStages() - firstCoverageStageIdx,
&drawState.getCoverageStage(firstCoverageStageIdx));
if (!separateCoverageFromColor) {
fNumColorStages = fFragmentStages.count();
}
}
};
GrOptDrawState* GrOptDrawState::Create(const GrDrawState& drawState, const GrDrawTargetCaps& caps,
GrGpu::DrawType drawType) {
if (NULL == drawState.fCachedOptState || caps.getUniqueID() != drawState.fCachedCapsID) {
GrBlendCoeff srcCoeff;
GrBlendCoeff dstCoeff;
BlendOptFlags blendFlags = (BlendOptFlags) drawState.getBlendOpts(false,
&srcCoeff,
&dstCoeff);
// If our blend coeffs are set to 0,1 we know we will not end up drawing unless we are
// stenciling. When path rendering the stencil settings are not always set on the draw state
// so we must check the draw type. In cases where we will skip drawing we simply return a
// null GrOptDrawState.
if (kZero_GrBlendCoeff == srcCoeff && kOne_GrBlendCoeff == dstCoeff &&
!drawState.getStencil().doesWrite() && GrGpu::kStencilPath_DrawType != drawType) {
return NULL;
}
drawState.fCachedOptState = SkNEW_ARGS(GrOptDrawState, (drawState, blendFlags, srcCoeff,
dstCoeff, caps));
drawState.fCachedCapsID = caps.getUniqueID();
} else {
#ifdef SK_DEBUG
GrBlendCoeff srcCoeff;
GrBlendCoeff dstCoeff;
BlendOptFlags blendFlags = (BlendOptFlags) drawState.getBlendOpts(false,
&srcCoeff,
&dstCoeff);
SkASSERT(GrOptDrawState(drawState, blendFlags, srcCoeff, dstCoeff, caps) ==
*drawState.fCachedOptState);
#endif
}
drawState.fCachedOptState->ref();
return drawState.fCachedOptState;
}
void GrOptDrawState::setOutputStateInfo(const GrDrawState& ds,
const GrDrawTargetCaps& caps,
int firstCoverageStageIdx,
bool* separateCoverageFromColor) {
// Set this default and then possibly change our mind if there is coverage.
fPrimaryOutputType = kModulate_PrimaryOutputType;
fSecondaryOutputType = kNone_SecondaryOutputType;
// If we do have coverage determine whether it matters.
*separateCoverageFromColor = this->hasGeometryProcessor();
if (!this->isCoverageDrawing() &&
(ds.numCoverageStages() - firstCoverageStageIdx > 0 ||
ds.hasGeometryProcessor() ||
this->hasCoverageVertexAttribute())) {
if (caps.dualSourceBlendingSupport()) {
if (kZero_GrBlendCoeff == fDstBlend) {
// write the coverage value to second color
fSecondaryOutputType = kCoverage_SecondaryOutputType;
*separateCoverageFromColor = true;
fDstBlend = (GrBlendCoeff)GrGpu::kIS2C_GrBlendCoeff;
} else if (kSA_GrBlendCoeff == fDstBlend) {
// SA dst coeff becomes 1-(1-SA)*coverage when dst is partially covered.
fSecondaryOutputType = kCoverageISA_SecondaryOutputType;
*separateCoverageFromColor = true;
fDstBlend = (GrBlendCoeff)GrGpu::kIS2C_GrBlendCoeff;
} else if (kSC_GrBlendCoeff == fDstBlend) {
// SA dst coeff becomes 1-(1-SA)*coverage when dst is partially covered.
fSecondaryOutputType = kCoverageISC_SecondaryOutputType;
*separateCoverageFromColor = true;
fDstBlend = (GrBlendCoeff)GrGpu::kIS2C_GrBlendCoeff;
}
} else if (fReadsDst &&
kOne_GrBlendCoeff == fSrcBlend &&
kZero_GrBlendCoeff == fDstBlend) {
fPrimaryOutputType = kCombineWithDst_PrimaryOutputType;
*separateCoverageFromColor = true;
}
}
}
void GrOptDrawState::adjustFromBlendOpts(const GrDrawState& ds,
int* firstColorStageIdx,
int* firstCoverageStageIdx,
uint8_t* fixedFunctionVAToRemove) {
switch (fBlendOptFlags) {
case kNone_BlendOpt:
case kSkipDraw_BlendOptFlag:
break;
case kCoverageAsAlpha_BlendOptFlag:
fFlagBits |= kCoverageDrawing_StateBit;
break;
case kEmitCoverage_BlendOptFlag:
fColor = 0xffffffff;
fInputColorIsUsed = true;
*firstColorStageIdx = ds.numColorStages();
*fixedFunctionVAToRemove |= 0x1 << kColor_GrVertexAttribBinding;
break;
case kEmitTransBlack_BlendOptFlag:
fColor = 0;
fCoverage = 0xff;
fInputColorIsUsed = true;
fInputCoverageIsUsed = true;
*firstColorStageIdx = ds.numColorStages();
*firstCoverageStageIdx = ds.numCoverageStages();
*fixedFunctionVAToRemove |= (0x1 << kColor_GrVertexAttribBinding |
0x1 << kCoverage_GrVertexAttribBinding);
break;
default:
SkFAIL("Unknown BlendOptFlag");
}
}
void GrOptDrawState::removeFixedFunctionVertexAttribs(uint8_t removeVAFlag) {
int numToRemove = 0;
uint8_t maskCheck = 0x1;
// Count the number of vertex attributes that we will actually remove
for (int i = 0; i < kGrFixedFunctionVertexAttribBindingCnt; ++i) {
if ((maskCheck & removeVAFlag) && -1 != fFixedFunctionVertexAttribIndices[i]) {
++numToRemove;
}
maskCheck <<= 1;
}
fOptVA.reset(fVACount - numToRemove);
GrVertexAttrib* dst = fOptVA.get();
const GrVertexAttrib* src = fVAPtr;
for (int i = 0, newIdx = 0; i < fVACount; ++i, ++src) {
const GrVertexAttrib& currAttrib = *src;
if (currAttrib.fBinding < kGrFixedFunctionVertexAttribBindingCnt) {
uint8_t maskCheck = 0x1 << currAttrib.fBinding;
if (maskCheck & removeVAFlag) {
SkASSERT(-1 != fFixedFunctionVertexAttribIndices[currAttrib.fBinding]);
fFixedFunctionVertexAttribIndices[currAttrib.fBinding] = -1;
continue;
}
fFixedFunctionVertexAttribIndices[currAttrib.fBinding] = newIdx;
}
memcpy(dst, src, sizeof(GrVertexAttrib));
++newIdx;
++dst;
}
fVACount -= numToRemove;
fVAPtr = fOptVA.get();
}
void GrOptDrawState::computeEffectiveColorStages(const GrDrawState& ds, int* firstColorStageIdx,
uint8_t* fixedFunctionVAToRemove) {
// Set up color and flags for ConstantColorComponent checks
GrProcessor::InvariantOutput inout;
inout.fIsSingleComponent = false;
if (!this->hasColorVertexAttribute()) {
inout.fColor = ds.getColor();
inout.fValidFlags = kRGBA_GrColorComponentFlags;
} else {
if (ds.vertexColorsAreOpaque()) {
inout.fColor = 0xFF << GrColor_SHIFT_A;
inout.fValidFlags = kA_GrColorComponentFlag;
} else {
inout.fValidFlags = 0;
// not strictly necessary but we get false alarms from tools about uninit.
inout.fColor = 0;
}
}
for (int i = 0; i < ds.numColorStages(); ++i) {
const GrFragmentProcessor* fp = ds.getColorStage(i).getProcessor();
fp->computeInvariantOutput(&inout);
if (!inout.fWillUseInputColor) {
*firstColorStageIdx = i;
fInputColorIsUsed = false;
}
if (kRGBA_GrColorComponentFlags == inout.fValidFlags) {
*firstColorStageIdx = i + 1;
fColor = inout.fColor;
fInputColorIsUsed = true;
*fixedFunctionVAToRemove |= 0x1 << kColor_GrVertexAttribBinding;
// Since we are clearing all previous color stages we are in a state where we have found
// zero stages that don't multiply the inputColor.
inout.fNonMulStageFound = false;
}
}
}
void GrOptDrawState::computeEffectiveCoverageStages(const GrDrawState& ds,
int* firstCoverageStageIdx) {
// We do not try to optimize out constantColor coverage effects here. It is extremely rare
// to have a coverage effect that returns a constant value for all four channels. Thus we
// save having to make extra virtual calls by not checking for it.
// Don't do any optimizations on coverage stages. It should not be the case where we do not use
// input coverage in an effect
#ifdef OptCoverageStages
GrProcessor::InvariantOutput inout;
for (int i = 0; i < ds.numCoverageStages(); ++i) {
const GrFragmentProcessor* fp = ds.getCoverageStage(i).getProcessor();
fp->computeInvariantOutput(&inout);
if (!inout.fWillUseInputColor) {
*firstCoverageStageIdx = i;
fInputCoverageIsUsed = false;
}
}
#endif
}
static void get_stage_stats(const GrFragmentStage& stage, bool* readsDst, bool* readsFragPosition) {
if (stage.getProcessor()->willReadDstColor()) {
*readsDst = true;
}
if (stage.getProcessor()->willReadFragmentPosition()) {
*readsFragPosition = true;
}
}
void GrOptDrawState::getStageStats(const GrDrawState& ds, int firstColorStageIdx,
int firstCoverageStageIdx) {
// We will need a local coord attrib if there is one currently set on the optState and we are
// actually generating some effect code
fRequiresLocalCoordAttrib = this->hasLocalCoordAttribute() &&
ds.numTotalStages() - firstColorStageIdx - firstCoverageStageIdx > 0;
fReadsDst = false;
fReadsFragPosition = false;
for (int s = firstColorStageIdx; s < ds.numColorStages(); ++s) {
const GrFragmentStage& stage = ds.getColorStage(s);
get_stage_stats(stage, &fReadsDst, &fReadsFragPosition);
}
for (int s = firstCoverageStageIdx; s < ds.numCoverageStages(); ++s) {
const GrFragmentStage& stage = ds.getCoverageStage(s);
get_stage_stats(stage, &fReadsDst, &fReadsFragPosition);
}
if (ds.hasGeometryProcessor()) {
const GrGeometryProcessor& gp = *ds.getGeometryProcessor();
fReadsFragPosition = fReadsFragPosition || gp.willReadFragmentPosition();
}
}
////////////////////////////////////////////////////////////////////////////////
bool GrOptDrawState::operator== (const GrOptDrawState& that) const {
return this->isEqual(that);
}
bool GrOptDrawState::isEqual(const GrOptDrawState& that) const {
bool usingVertexColors = this->hasColorVertexAttribute();
if (!usingVertexColors && this->fColor != that.fColor) {
return false;
}
if (this->getRenderTarget() != that.getRenderTarget() ||
this->fFragmentStages.count() != that.fFragmentStages.count() ||
this->fNumColorStages != that.fNumColorStages ||
!this->fViewMatrix.cheapEqualTo(that.fViewMatrix) ||
this->fSrcBlend != that.fSrcBlend ||
this->fDstBlend != that.fDstBlend ||
this->fBlendConstant != that.fBlendConstant ||
this->fFlagBits != that.fFlagBits ||
this->fVACount != that.fVACount ||
this->fVAStride != that.fVAStride ||
memcmp(this->fVAPtr, that.fVAPtr, this->fVACount * sizeof(GrVertexAttrib)) ||
this->fStencilSettings != that.fStencilSettings ||
this->fDrawFace != that.fDrawFace ||
this->fInputColorIsUsed != that.fInputColorIsUsed ||
this->fInputCoverageIsUsed != that.fInputCoverageIsUsed ||
this->fReadsDst != that.fReadsDst ||
this->fReadsFragPosition != that.fReadsFragPosition ||
this->fRequiresLocalCoordAttrib != that.fRequiresLocalCoordAttrib ||
this->fPrimaryOutputType != that.fPrimaryOutputType ||
this->fSecondaryOutputType != that.fSecondaryOutputType) {
return false;
}
bool usingVertexCoverage = this->hasCoverageVertexAttribute();
if (!usingVertexCoverage && this->fCoverage != that.fCoverage) {
return false;
}
bool explicitLocalCoords = this->hasLocalCoordAttribute();
if (this->hasGeometryProcessor()) {
if (!that.hasGeometryProcessor()) {
return false;
} else if (!this->getGeometryProcessor()->isEqual(*that.getGeometryProcessor())) {
return false;
}
} else if (that.hasGeometryProcessor()) {
return false;
}
for (int i = 0; i < this->numFragmentStages(); i++) {
if (!GrFragmentStage::AreCompatible(this->getFragmentStage(i), that.getFragmentStage(i),
explicitLocalCoords)) {
return false;
}
}
SkASSERT(0 == memcmp(this->fFixedFunctionVertexAttribIndices,
that.fFixedFunctionVertexAttribIndices,
sizeof(this->fFixedFunctionVertexAttribIndices)));
return true;
}
|