aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/GrInOrderDrawBuffer.cpp
blob: 678a9c566e2223186dd5661990806a9f6f4b31cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923

/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */


#include "GrInOrderDrawBuffer.h"
#include "GrBufferAllocPool.h"
#include "GrGpu.h"
#include "GrIndexBuffer.h"
#include "GrPath.h"
#include "GrRenderTarget.h"
#include "GrTexture.h"
#include "GrVertexBuffer.h"

GrInOrderDrawBuffer::GrInOrderDrawBuffer(const GrGpu* gpu,
                                         GrVertexBufferAllocPool* vertexPool,
                                         GrIndexBufferAllocPool* indexPool)
    : fAutoFlushTarget(NULL)
    , fClipSet(true)
    , fVertexPool(*vertexPool)
    , fIndexPool(*indexPool)
    , fLastRectVertexLayout(0)
    , fQuadIndexBuffer(NULL)
    , fMaxQuads(0)
    , fFlushing(false) {

    fCaps = gpu->getCaps();

    GrAssert(NULL != vertexPool);
    GrAssert(NULL != indexPool);

    GeometryPoolState& poolState = fGeoPoolStateStack.push_back();
    poolState.fUsedPoolVertexBytes = 0;
    poolState.fUsedPoolIndexBytes = 0;
#if GR_DEBUG
    poolState.fPoolVertexBuffer = (GrVertexBuffer*)~0;
    poolState.fPoolStartVertex = ~0;
    poolState.fPoolIndexBuffer = (GrIndexBuffer*)~0;
    poolState.fPoolStartIndex = ~0;
#endif
    this->reset();
}

GrInOrderDrawBuffer::~GrInOrderDrawBuffer() {
    this->reset();
    // This must be called by before the GrDrawTarget destructor
    this->releaseGeometry();
    GrSafeUnref(fQuadIndexBuffer);
    GrSafeUnref(fAutoFlushTarget);
}

void GrInOrderDrawBuffer::setQuadIndexBuffer(const GrIndexBuffer* indexBuffer) {
    bool newIdxBuffer = fQuadIndexBuffer != indexBuffer;
    if (newIdxBuffer) {
        GrSafeUnref(fQuadIndexBuffer);
        fQuadIndexBuffer = indexBuffer;
        GrSafeRef(fQuadIndexBuffer);
        fCurrQuad = 0;
        fMaxQuads = (NULL == indexBuffer) ? 0 : indexBuffer->maxQuads();
    } else {
        GrAssert((NULL == indexBuffer && 0 == fMaxQuads) ||
                 (indexBuffer->maxQuads() == fMaxQuads));
    }
}

////////////////////////////////////////////////////////////////////////////////

void GrInOrderDrawBuffer::resetDrawTracking() {
    fCurrQuad = 0;
    fInstancedDrawTracker.reset();
}

void GrInOrderDrawBuffer::drawRect(const GrRect& rect,
                                   const GrMatrix* matrix,
                                   const GrRect* srcRects[],
                                   const GrMatrix* srcMatrices[]) {

    GrAssert(!(NULL == fQuadIndexBuffer && fCurrQuad));
    GrAssert(!(fDraws.empty() && fCurrQuad));
    GrAssert(!(0 != fMaxQuads && NULL == fQuadIndexBuffer));

    GrDrawState* drawState = this->drawState();

    // if we have a quad IB then either append to the previous run of
    // rects or start a new run
    if (fMaxQuads) {

        bool appendToPreviousDraw = false;
        GrVertexLayout layout = GetRectVertexLayout(srcRects);

        // Batching across colors means we move the draw color into the
        // rect's vertex colors to allow greater batching (a lot of rects
        // in a row differing only in color is a common occurence in tables).
        bool batchAcrossColors = true;
        if (!this->getCaps().dualSourceBlendingSupport()) {
            for (int s = 0; s < GrDrawState::kNumStages; ++s) {
                if (this->getDrawState().isStageEnabled(s)) {
                    // We disable batching across colors when there is a texture 
                    // present because (by pushing the the color to the vertices)
                    // Ganesh loses track of the rect's opacity. This, in turn, can
                    // cause some of the blending optimizations to be disabled. This
                    // becomes a huge problem on some of the smaller devices where
                    // shader derivatives and dual source blending aren't supported.
                    // In those cases paths are often drawn to a texture and then
                    // drawn as a texture (using this method). Because dual source
                    // blending is disabled (and the blend optimizations are short
                    // circuited) some of the more esoteric blend modes can no longer
                    // be supported.
                    // TODO: add tracking of batchAcrossColors's opacity
                    batchAcrossColors = false;
                    break;
                }
            }
        }

        if (batchAcrossColors) {
            layout |= kColor_VertexLayoutBit;
        }

        AutoReleaseGeometry geo(this, layout, 4, 0);
        if (!geo.succeeded()) {
            GrPrintf("Failed to get space for vertices!\n");
            return;
        }
        GrMatrix combinedMatrix = drawState->getViewMatrix();
        // We go to device space so that matrix changes allow us to concat
        // rect draws. When the caller has provided explicit source rects
        // then we don't want to modify the sampler matrices. Otherwise
        // we have to account for the view matrix change in the sampler
        // matrices.
        uint32_t explicitCoordMask = 0;
        if (srcRects) {
            for (int s = 0; s < GrDrawState::kNumStages; ++s) {
                if (srcRects[s]) {
                    explicitCoordMask |= (1 << s);
                }
            }
        }
        GrDrawState::AutoDeviceCoordDraw adcd(this->drawState(), explicitCoordMask);
        if (!adcd.succeeded()) {
            return;
        }
        if (NULL != matrix) {
            combinedMatrix.preConcat(*matrix);
        }

        SetRectVertices(rect, &combinedMatrix, srcRects, srcMatrices,
                        this->getDrawState().getColor(), layout, geo.vertices());

        // Now that the paint's color is stored in the vertices set it to
        // white so that the following code can batch all the rects regardless
        // of paint color
        GrDrawState::AutoColorRestore acr(this->drawState(), 
                                          batchAcrossColors ? SK_ColorWHITE
                                                            : this->getDrawState().getColor());

        // we don't want to miss an opportunity to batch rects together
        // simply because the clip has changed if the clip doesn't affect
        // the rect.
        bool disabledClip = false;

        if (drawState->isClipState()) {

            GrRect devClipRect;
            bool isIntersectionOfRects = false;

            fClip->fClipStack->getConservativeBounds(-fClip->fOrigin.fX,
                                                     -fClip->fOrigin.fY,
                                                     drawState->getRenderTarget()->width(),
                                                     drawState->getRenderTarget()->height(),
                                                     &devClipRect,
                                                     &isIntersectionOfRects);

            if (isIntersectionOfRects) {
                // If the clip rect touches the edge of the viewport, extended it
                // out (close) to infinity to avoid bogus intersections.
                // We might consider a more exact clip to viewport if this
                // conservative test fails.
                const GrRenderTarget* target = drawState->getRenderTarget();
                if (0 >= devClipRect.fLeft) {
                    devClipRect.fLeft = GR_ScalarMin;
                }
                if (target->width() <= devClipRect.fRight) {
                    devClipRect.fRight = GR_ScalarMax;
                }
                if (0 >= devClipRect.top()) {
                    devClipRect.fTop = GR_ScalarMin;
                }
                if (target->height() <= devClipRect.fBottom) {
                    devClipRect.fBottom = GR_ScalarMax;
                }
                int stride = VertexSize(layout);
                bool insideClip = true;
                for (int v = 0; v < 4; ++v) {
                    const GrPoint& p = *GetVertexPoint(geo.vertices(), v, stride);
                    if (!devClipRect.contains(p)) {
                        insideClip = false;
                        break;
                    }
                }
                if (insideClip) {
                    drawState->disableState(GrDrawState::kClip_StateBit);
                    disabledClip = true;
                }
            }
        }

        if (!this->needsNewClip() &&
            !this->needsNewState() &&
            fCurrQuad > 0 &&
            fCurrQuad < fMaxQuads &&
            layout == fLastRectVertexLayout) {

            int vsize = VertexSize(layout);

            Draw& lastDraw = fDraws.back();

            GrAssert(lastDraw.fIndexBuffer == fQuadIndexBuffer);
            GrAssert(kTriangles_GrPrimitiveType == lastDraw.fPrimitiveType);
            GrAssert(0 == lastDraw.fVertexCount % 4);
            GrAssert(0 == lastDraw.fIndexCount % 6);
            GrAssert(0 == lastDraw.fStartIndex);

            GeometryPoolState& poolState = fGeoPoolStateStack.back();

            appendToPreviousDraw =
                kDraw_Cmd == fCmds.back() &&
                lastDraw.fVertexBuffer == poolState.fPoolVertexBuffer &&
                (fCurrQuad * 4 + lastDraw.fStartVertex) == poolState.fPoolStartVertex;

            if (appendToPreviousDraw) {
                lastDraw.fVertexCount += 4;
                lastDraw.fIndexCount += 6;
                fCurrQuad += 1;
                // we reserved above, so we should be the first
                // use of this vertex reservation.
                GrAssert(0 == poolState.fUsedPoolVertexBytes);
                poolState.fUsedPoolVertexBytes = 4 * vsize;
            }
        }
        if (!appendToPreviousDraw) {
            this->setIndexSourceToBuffer(fQuadIndexBuffer);
            this->drawIndexed(kTriangles_GrPrimitiveType, 0, 0, 4, 6);
            fCurrQuad = 1;
            fLastRectVertexLayout = layout;
        }
        if (disabledClip) {
            drawState->enableState(GrDrawState::kClip_StateBit);
        }
        fInstancedDrawTracker.reset();
    } else {
        INHERITED::drawRect(rect, matrix, srcRects, srcMatrices);
    }
}

void GrInOrderDrawBuffer::drawIndexedInstances(GrPrimitiveType type,
                                               int instanceCount,
                                               int verticesPerInstance,
                                               int indicesPerInstance) {
    if (!verticesPerInstance || !indicesPerInstance) {
        return;
    }

    const GeometrySrcState& geomSrc = this->getGeomSrc();

    // we only attempt to concat the case when reserved verts are used with
    // an index buffer.
    if (kReserved_GeometrySrcType == geomSrc.fVertexSrc &&
        kBuffer_GeometrySrcType == geomSrc.fIndexSrc) {

        if (this->needsNewClip()) {
            this->recordClip();
        }
        if (this->needsNewState()) {
            this->recordState();
        }

        Draw* draw = NULL;
        // if the last draw used the same indices/vertices per shape then we
        // may be able to append to it.
        if (kDraw_Cmd == fCmds.back() &&
            verticesPerInstance == fInstancedDrawTracker.fVerticesPerInstance &&
            indicesPerInstance == fInstancedDrawTracker.fIndicesPerInstance) {
            GrAssert(fDraws.count());
            draw = &fDraws.back();
        }

        GeometryPoolState& poolState = fGeoPoolStateStack.back();
        const GrVertexBuffer* vertexBuffer = poolState.fPoolVertexBuffer;

        // Check whether the draw is compatible with this draw in order to
        // append
        if (NULL == draw ||
            draw->fIndexBuffer != geomSrc.fIndexBuffer ||
            draw->fPrimitiveType != type ||
            draw->fVertexBuffer != vertexBuffer) {

            draw = this->recordDraw();
            draw->fIndexBuffer = geomSrc.fIndexBuffer;
            geomSrc.fIndexBuffer->ref();
            draw->fVertexBuffer = vertexBuffer;
            vertexBuffer->ref();
            draw->fPrimitiveType = type;
            draw->fStartIndex = 0;
            draw->fIndexCount = 0;
            draw->fStartVertex = poolState.fPoolStartVertex;
            draw->fVertexCount = 0;
            draw->fVertexLayout = geomSrc.fVertexLayout;
        } else {
            GrAssert(!(draw->fIndexCount % indicesPerInstance));
            GrAssert(!(draw->fVertexCount % verticesPerInstance));
            GrAssert(poolState.fPoolStartVertex == draw->fStartVertex +
                                                   draw->fVertexCount);
        }

        // how many instances can be in a single draw
        int maxInstancesPerDraw = this->indexCountInCurrentSource() /
                                  indicesPerInstance;
        if (!maxInstancesPerDraw) {
            return;
        }
        // how many instances should be concat'ed onto draw
        int instancesToConcat = maxInstancesPerDraw - draw->fVertexCount /
                                                      verticesPerInstance;
        if (maxInstancesPerDraw > instanceCount) {
            maxInstancesPerDraw = instanceCount;
            if (instancesToConcat > instanceCount) {
                instancesToConcat = instanceCount;
            }
        }

        // update the amount of reserved data actually referenced in draws
        size_t vertexBytes = instanceCount * verticesPerInstance *
                             VertexSize(draw->fVertexLayout);
        poolState.fUsedPoolVertexBytes =
                            GrMax(poolState.fUsedPoolVertexBytes, vertexBytes);

        while (instanceCount) {
            if (!instancesToConcat) {
                int startVertex = draw->fStartVertex + draw->fVertexCount;
                draw = this->recordDraw();
                draw->fIndexBuffer = geomSrc.fIndexBuffer;
                geomSrc.fIndexBuffer->ref();
                draw->fVertexBuffer = vertexBuffer;
                vertexBuffer->ref();
                draw->fPrimitiveType = type;
                draw->fStartIndex = 0;
                draw->fStartVertex = startVertex;
                draw->fVertexCount = 0;
                draw->fVertexLayout = geomSrc.fVertexLayout;
                instancesToConcat = maxInstancesPerDraw;
            }
            draw->fVertexCount += instancesToConcat * verticesPerInstance;
            draw->fIndexCount += instancesToConcat * indicesPerInstance;
            instanceCount -= instancesToConcat;
            instancesToConcat = 0;
        }

        // update draw tracking for next draw
        fCurrQuad = 0;
        fInstancedDrawTracker.fVerticesPerInstance = verticesPerInstance;
        fInstancedDrawTracker.fIndicesPerInstance = indicesPerInstance;
    } else {
        this->INHERITED::drawIndexedInstances(type,
                                              instanceCount,
                                              verticesPerInstance,
                                              indicesPerInstance);
    }

}

void GrInOrderDrawBuffer::onDrawIndexed(GrPrimitiveType primitiveType,
                                        int startVertex,
                                        int startIndex,
                                        int vertexCount,
                                        int indexCount) {

    if (!vertexCount || !indexCount) {
        return;
    }

    this->resetDrawTracking();

    GeometryPoolState& poolState = fGeoPoolStateStack.back();

    if (this->needsNewClip()) {
       this->recordClip();
    }
    if (this->needsNewState()) {
        this->recordState();
    }

    Draw* draw = this->recordDraw();

    draw->fPrimitiveType = primitiveType;
    draw->fStartVertex   = startVertex;
    draw->fStartIndex    = startIndex;
    draw->fVertexCount   = vertexCount;
    draw->fIndexCount    = indexCount;

    draw->fVertexLayout = this->getVertexLayout();
    switch (this->getGeomSrc().fVertexSrc) {
    case kBuffer_GeometrySrcType:
        draw->fVertexBuffer = this->getGeomSrc().fVertexBuffer;
        break;
    case kReserved_GeometrySrcType: // fallthrough
    case kArray_GeometrySrcType: {
        size_t vertexBytes = (vertexCount + startVertex) *
                             VertexSize(draw->fVertexLayout);
        poolState.fUsedPoolVertexBytes =
                            GrMax(poolState.fUsedPoolVertexBytes, vertexBytes);
        draw->fVertexBuffer = poolState.fPoolVertexBuffer;
        draw->fStartVertex += poolState.fPoolStartVertex;
        break;
    }
    default:
        GrCrash("unknown geom src type");
    }
    draw->fVertexBuffer->ref();

    switch (this->getGeomSrc().fIndexSrc) {
    case kBuffer_GeometrySrcType:
        draw->fIndexBuffer = this->getGeomSrc().fIndexBuffer;
        break;
    case kReserved_GeometrySrcType: // fallthrough
    case kArray_GeometrySrcType: {
        size_t indexBytes = (indexCount + startIndex) * sizeof(uint16_t);
        poolState.fUsedPoolIndexBytes =
                            GrMax(poolState.fUsedPoolIndexBytes, indexBytes);
        draw->fIndexBuffer = poolState.fPoolIndexBuffer;
        draw->fStartIndex += poolState.fPoolStartIndex;
        break;
    }
    default:
        GrCrash("unknown geom src type");
    }
    draw->fIndexBuffer->ref();
}

void GrInOrderDrawBuffer::onDrawNonIndexed(GrPrimitiveType primitiveType,
                                           int startVertex,
                                           int vertexCount) {
    if (!vertexCount) {
        return;
    }

    this->resetDrawTracking();

    GeometryPoolState& poolState = fGeoPoolStateStack.back();
    if (this->needsNewClip()) {
        this->recordClip();
    }
    if (this->needsNewState()) {
        this->recordState();
    }

    Draw* draw = this->recordDraw();
    draw->fPrimitiveType = primitiveType;
    draw->fStartVertex   = startVertex;
    draw->fStartIndex    = 0;
    draw->fVertexCount   = vertexCount;
    draw->fIndexCount    = 0;

    draw->fVertexLayout = this->getVertexLayout();
    switch (this->getGeomSrc().fVertexSrc) {
    case kBuffer_GeometrySrcType:
        draw->fVertexBuffer = this->getGeomSrc().fVertexBuffer;
        break;
    case kReserved_GeometrySrcType: // fallthrough
    case kArray_GeometrySrcType: {
        size_t vertexBytes = (vertexCount + startVertex) *
                             VertexSize(draw->fVertexLayout);
        poolState.fUsedPoolVertexBytes =
                            GrMax(poolState.fUsedPoolVertexBytes, vertexBytes);
        draw->fVertexBuffer = poolState.fPoolVertexBuffer;
        draw->fStartVertex += poolState.fPoolStartVertex;
        break;
    }
    default:
        GrCrash("unknown geom src type");
    }
    draw->fVertexBuffer->ref();
    draw->fIndexBuffer = NULL;
}

void GrInOrderDrawBuffer::onStencilPath(const GrPath* path, GrPathFill fill) {
    if (this->needsNewClip()) {
        this->recordClip();
    }
    // Only compare the subset of GrDrawState relevant to path stenciling?
    if (this->needsNewState()) {
        this->recordState();
    }
    StencilPath* sp = this->recordStencilPath();
    sp->fPath.reset(path);
    path->ref();
    sp->fFill = fill;
}

void GrInOrderDrawBuffer::clear(const GrIRect* rect,
                                GrColor color,
                                GrRenderTarget* renderTarget) {
    GrIRect r;
    if (NULL == renderTarget) {
        renderTarget = this->drawState()->getRenderTarget();
        GrAssert(NULL != renderTarget);
    }
    if (NULL == rect) {
        // We could do something smart and remove previous draws and clears to
        // the current render target. If we get that smart we have to make sure
        // those draws aren't read before this clear (render-to-texture).
        r.setLTRB(0, 0, renderTarget->width(), renderTarget->height());
        rect = &r;
    }
    Clear* clr = this->recordClear();
    clr->fColor = color;
    clr->fRect = *rect;
    clr->fRenderTarget = renderTarget;
    renderTarget->ref();
}

void GrInOrderDrawBuffer::reset() {
    GrAssert(1 == fGeoPoolStateStack.count());
    this->resetVertexSource();
    this->resetIndexSource();
    int numDraws = fDraws.count();
    for (int d = 0; d < numDraws; ++d) {
        // we always have a VB, but not always an IB
        GrAssert(NULL != fDraws[d].fVertexBuffer);
        fDraws[d].fVertexBuffer->unref();
        GrSafeUnref(fDraws[d].fIndexBuffer);
    }
    fCmds.reset();
    fDraws.reset();
    fStencilPaths.reset();
    fStates.reset();
    fClears.reset();
    fVertexPool.reset();
    fIndexPool.reset();
    fClips.reset();
    fClipOrigins.reset();
    fClipSet = true;

    this->resetDrawTracking();

    // we start off with a default clip and state so that we don't have
    // to do count checks on fClips, fStates, or fCmds before checking their
    // last entry.
    this->recordDefaultState();
    this->recordDefaultClip();
}

bool GrInOrderDrawBuffer::playback(GrDrawTarget* target) {
    GrAssert(kReserved_GeometrySrcType != this->getGeomSrc().fVertexSrc);
    GrAssert(kReserved_GeometrySrcType != this->getGeomSrc().fIndexSrc);

    GrAssert(NULL != target);
    GrAssert(target != this); // not considered and why?

    int numCmds = fCmds.count();
    GrAssert(numCmds >= 2);
    if (2 == numCmds) {
        GrAssert(kSetState_Cmd == fCmds[0]);
        GrAssert(kSetClip_Cmd  == fCmds[1]);
        return false;
    }

    fVertexPool.unlock();
    fIndexPool.unlock();

    GrDrawTarget::AutoClipRestore acr(target);
    AutoGeometryPush agp(target);
    GrDrawState* prevDrawState = target->drawState();
    prevDrawState->ref();

    GrClipData clipData;

    int currState       = 0;
    int currClip        = 0;
    int currClear       = 0;
    int currDraw        = 0;
    int currStencilPath = 0;

    for (int c = 0; c < numCmds; ++c) {
        switch (fCmds[c]) {
            case kDraw_Cmd: {
                const Draw& draw = fDraws[currDraw];
                target->setVertexSourceToBuffer(draw.fVertexLayout, draw.fVertexBuffer);
                if (draw.fIndexCount) {
                    target->setIndexSourceToBuffer(draw.fIndexBuffer);
                }

                if (draw.fIndexCount) {
                    target->drawIndexed(draw.fPrimitiveType,
                                        draw.fStartVertex,
                                        draw.fStartIndex,
                                        draw.fVertexCount,
                                        draw.fIndexCount);
                } else {
                    target->drawNonIndexed(draw.fPrimitiveType,
                                           draw.fStartVertex,
                                           draw.fVertexCount);
                }
                ++currDraw;
                break;
            }
            case kStencilPath_Cmd: {
                const StencilPath& sp = fStencilPaths[currStencilPath];
                target->stencilPath(sp.fPath.get(), sp.fFill);
                ++currStencilPath;
                break;
            }
            case kSetState_Cmd:
                target->setDrawState(&fStates[currState]);
                ++currState;
                break;
            case kSetClip_Cmd:
                clipData.fClipStack = &fClips[currClip];
                clipData.fOrigin = fClipOrigins[currClip];
                target->setClip(&clipData);
                ++currClip;
                break;
            case kClear_Cmd:
                target->clear(&fClears[currClear].fRect,
                              fClears[currClear].fColor,
                              fClears[currClear].fRenderTarget);
                ++currClear;
                break;
        }
    }
    // we should have consumed all the states, clips, etc.
    GrAssert(fStates.count() == currState);
    GrAssert(fClips.count() == currClip);
    GrAssert(fClipOrigins.count() == currClip);
    GrAssert(fClears.count() == currClear);
    GrAssert(fDraws.count()  == currDraw);

    target->setDrawState(prevDrawState);
    prevDrawState->unref();
    return true;
}

void GrInOrderDrawBuffer::setAutoFlushTarget(GrDrawTarget* target) {
    GrSafeAssign(fAutoFlushTarget, target);
}

void GrInOrderDrawBuffer::willReserveVertexAndIndexSpace(
                                GrVertexLayout vertexLayout,
                                int vertexCount,
                                int indexCount) {
    if (NULL != fAutoFlushTarget) {
        // We use geometryHints() to know whether to flush the draw buffer. We
        // can't flush if we are inside an unbalanced pushGeometrySource.
        // Moreover, flushing blows away vertex and index data that was
        // previously reserved. So if the vertex or index data is pulled from
        // reserved space and won't be released by this request then we can't
        // flush.
        bool insideGeoPush = fGeoPoolStateStack.count() > 1;

        bool unreleasedVertexSpace =
            !vertexCount &&
            kReserved_GeometrySrcType == this->getGeomSrc().fVertexSrc;

        bool unreleasedIndexSpace =
            !indexCount &&
            kReserved_GeometrySrcType == this->getGeomSrc().fIndexSrc;

        // we don't want to finalize any reserved geom on the target since
        // we don't know that the client has finished writing to it.
        bool targetHasReservedGeom =
            fAutoFlushTarget->hasReservedVerticesOrIndices();

        int vcount = vertexCount;
        int icount = indexCount;

        if (!insideGeoPush &&
            !unreleasedVertexSpace &&
            !unreleasedIndexSpace &&
            !targetHasReservedGeom &&
            this->geometryHints(vertexLayout, &vcount, &icount)) {

            this->flushTo(fAutoFlushTarget);
        }
    }
}

bool GrInOrderDrawBuffer::geometryHints(GrVertexLayout vertexLayout,
                                        int* vertexCount,
                                        int* indexCount) const {
    // we will recommend a flush if the data could fit in a single
    // preallocated buffer but none are left and it can't fit
    // in the current buffer (which may not be prealloced).
    bool flush = false;
    if (NULL != indexCount) {
        int32_t currIndices = fIndexPool.currentBufferIndices();
        if (*indexCount > currIndices &&
            (!fIndexPool.preallocatedBuffersRemaining() &&
             *indexCount <= fIndexPool.preallocatedBufferIndices())) {

            flush = true;
        }
        *indexCount = currIndices;
    }
    if (NULL != vertexCount) {
        int32_t currVertices = fVertexPool.currentBufferVertices(vertexLayout);
        if (*vertexCount > currVertices &&
            (!fVertexPool.preallocatedBuffersRemaining() &&
             *vertexCount <= fVertexPool.preallocatedBufferVertices(vertexLayout))) {

            flush = true;
        }
        *vertexCount = currVertices;
    }
    return flush;
}

bool GrInOrderDrawBuffer::onReserveVertexSpace(GrVertexLayout vertexLayout,
                                               int vertexCount,
                                               void** vertices) {
    GeometryPoolState& poolState = fGeoPoolStateStack.back();
    GrAssert(vertexCount > 0);
    GrAssert(NULL != vertices);
    GrAssert(0 == poolState.fUsedPoolVertexBytes);

    *vertices = fVertexPool.makeSpace(vertexLayout,
                                      vertexCount,
                                      &poolState.fPoolVertexBuffer,
                                      &poolState.fPoolStartVertex);
    return NULL != *vertices;
}

bool GrInOrderDrawBuffer::onReserveIndexSpace(int indexCount, void** indices) {
    GeometryPoolState& poolState = fGeoPoolStateStack.back();
    GrAssert(indexCount > 0);
    GrAssert(NULL != indices);
    GrAssert(0 == poolState.fUsedPoolIndexBytes);

    *indices = fIndexPool.makeSpace(indexCount,
                                    &poolState.fPoolIndexBuffer,
                                    &poolState.fPoolStartIndex);
    return NULL != *indices;
}

void GrInOrderDrawBuffer::releaseReservedVertexSpace() {
    GeometryPoolState& poolState = fGeoPoolStateStack.back();
    const GeometrySrcState& geoSrc = this->getGeomSrc();

    // If we get a release vertex space call then our current source should either be reserved
    // or array (which we copied into reserved space).
    GrAssert(kReserved_GeometrySrcType == geoSrc.fVertexSrc ||
             kArray_GeometrySrcType == geoSrc.fVertexSrc);

    // When the caller reserved vertex buffer space we gave it back a pointer
    // provided by the vertex buffer pool. At each draw we tracked the largest
    // offset into the pool's pointer that was referenced. Now we return to the
    // pool any portion at the tail of the allocation that no draw referenced.
    size_t reservedVertexBytes = VertexSize(geoSrc.fVertexLayout) *
                                 geoSrc.fVertexCount;
    fVertexPool.putBack(reservedVertexBytes -
                        poolState.fUsedPoolVertexBytes);
    poolState.fUsedPoolVertexBytes = 0;
    poolState.fPoolVertexBuffer = NULL;
    poolState.fPoolStartVertex = 0;
}

void GrInOrderDrawBuffer::releaseReservedIndexSpace() {
    GeometryPoolState& poolState = fGeoPoolStateStack.back();
    const GeometrySrcState& geoSrc = this->getGeomSrc();

    // If we get a release index space call then our current source should either be reserved
    // or array (which we copied into reserved space).
    GrAssert(kReserved_GeometrySrcType == geoSrc.fIndexSrc ||
             kArray_GeometrySrcType == geoSrc.fIndexSrc);

    // Similar to releaseReservedVertexSpace we return any unused portion at
    // the tail
    size_t reservedIndexBytes = sizeof(uint16_t) * geoSrc.fIndexCount;
    fIndexPool.putBack(reservedIndexBytes - poolState.fUsedPoolIndexBytes);
    poolState.fUsedPoolIndexBytes = 0;
    poolState.fPoolIndexBuffer = NULL;
    poolState.fPoolStartIndex = 0;
}

void GrInOrderDrawBuffer::onSetVertexSourceToArray(const void* vertexArray,
                                                   int vertexCount) {

    GeometryPoolState& poolState = fGeoPoolStateStack.back();
    GrAssert(0 == poolState.fUsedPoolVertexBytes);
#if GR_DEBUG
    bool success =
#endif
    fVertexPool.appendVertices(this->getVertexLayout(),
                               vertexCount,
                               vertexArray,
                               &poolState.fPoolVertexBuffer,
                               &poolState.fPoolStartVertex);
    GR_DEBUGASSERT(success);
}

void GrInOrderDrawBuffer::onSetIndexSourceToArray(const void* indexArray,
                                                  int indexCount) {
    GeometryPoolState& poolState = fGeoPoolStateStack.back();
    GrAssert(0 == poolState.fUsedPoolIndexBytes);
#if GR_DEBUG
    bool success =
#endif
    fIndexPool.appendIndices(indexCount,
                             indexArray,
                             &poolState.fPoolIndexBuffer,
                             &poolState.fPoolStartIndex);
    GR_DEBUGASSERT(success);
}

void GrInOrderDrawBuffer::releaseVertexArray() {
    // When the client provides an array as the vertex source we handled it
    // by copying their array into reserved space.
    this->GrInOrderDrawBuffer::releaseReservedVertexSpace();
}

void GrInOrderDrawBuffer::releaseIndexArray() {
    // When the client provides an array as the index source we handled it
    // by copying their array into reserved space.
    this->GrInOrderDrawBuffer::releaseReservedIndexSpace();
}

void GrInOrderDrawBuffer::geometrySourceWillPush() {
    GeometryPoolState& poolState = fGeoPoolStateStack.push_back();
    poolState.fUsedPoolVertexBytes = 0;
    poolState.fUsedPoolIndexBytes = 0;
    this->resetDrawTracking();
#if GR_DEBUG
    poolState.fPoolVertexBuffer = (GrVertexBuffer*)~0;
    poolState.fPoolStartVertex = ~0;
    poolState.fPoolIndexBuffer = (GrIndexBuffer*)~0;
    poolState.fPoolStartIndex = ~0;
#endif
}

void GrInOrderDrawBuffer::geometrySourceWillPop(
                                        const GeometrySrcState& restoredState) {
    GrAssert(fGeoPoolStateStack.count() > 1);
    fGeoPoolStateStack.pop_back();
    GeometryPoolState& poolState = fGeoPoolStateStack.back();
    // we have to assume that any slack we had in our vertex/index data
    // is now unreleasable because data may have been appended later in the
    // pool.
    if (kReserved_GeometrySrcType == restoredState.fVertexSrc ||
        kArray_GeometrySrcType == restoredState.fVertexSrc) {
        poolState.fUsedPoolVertexBytes =
            VertexSize(restoredState.fVertexLayout) *
            restoredState.fVertexCount;
    }
    if (kReserved_GeometrySrcType == restoredState.fIndexSrc ||
        kArray_GeometrySrcType == restoredState.fIndexSrc) {
        poolState.fUsedPoolIndexBytes = sizeof(uint16_t) *
                                         restoredState.fIndexCount;
    }
    this->resetDrawTracking();
}

bool GrInOrderDrawBuffer::needsNewState() const {
    // we should have recorded a default state in reset()
    GrAssert(!fStates.empty());
    return fStates.back() != this->getDrawState();
}

bool GrInOrderDrawBuffer::needsNewClip() const {
   if (this->getDrawState().isClipState()) {
       if (fClipSet &&
           (fClips.back() != *fClip->fClipStack ||
            fClipOrigins.back() != fClip->fOrigin)) {
           return true;
       }
    }
    return false;
}

void GrInOrderDrawBuffer::recordClip() {
    fClips.push_back() = *fClip->fClipStack;
    fClipOrigins.push_back() = fClip->fOrigin;
    fClipSet = false;
    fCmds.push_back(kSetClip_Cmd);
}

void GrInOrderDrawBuffer::recordDefaultClip() {
    fClips.push_back() = SkClipStack();
    fClipOrigins.push_back() = SkIPoint::Make(0, 0);
    fCmds.push_back(kSetClip_Cmd);
}

void GrInOrderDrawBuffer::recordState() {
    fStates.push_back(this->getDrawState());
    fCmds.push_back(kSetState_Cmd);
}

void GrInOrderDrawBuffer::recordDefaultState() {
    fStates.push_back(GrDrawState());
    fCmds.push_back(kSetState_Cmd);
}

GrInOrderDrawBuffer::Draw* GrInOrderDrawBuffer::recordDraw() {
    fCmds.push_back(kDraw_Cmd);
    return &fDraws.push_back();
}

GrInOrderDrawBuffer::StencilPath* GrInOrderDrawBuffer::recordStencilPath() {
    fCmds.push_back(kStencilPath_Cmd);
    return &fStencilPaths.push_back();
}

GrInOrderDrawBuffer::Clear* GrInOrderDrawBuffer::recordClear() {
    fCmds.push_back(kClear_Cmd);
    return &fClears.push_back();
}

void GrInOrderDrawBuffer::clipWillBeSet(const GrClipData* newClipData) {
    INHERITED::clipWillBeSet(newClipData);
    fClipSet = true;
}