1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
|
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrGpu_DEFINED
#define GrGpu_DEFINED
#include "GrDrawTarget.h"
#include "GrPathRendering.h"
#include "GrProgramDesc.h"
#include "SkPath.h"
class GrContext;
class GrNonInstancedVertices;
class GrPath;
class GrPathRange;
class GrPathRenderer;
class GrPathRendererChain;
class GrPipeline;
class GrPrimitiveProcessor;
class GrStencilAttachment;
class GrVertices;
class GrGpu : public SkRefCnt {
public:
/**
* Create an instance of GrGpu that matches the specified backend. If the requested backend is
* not supported (at compile-time or run-time) this returns NULL. The context will not be
* fully constructed and should not be used by GrGpu until after this function returns.
*/
static GrGpu* Create(GrBackend, GrBackendContext, GrContext* context);
////////////////////////////////////////////////////////////////////////////
GrGpu(GrContext* context);
~GrGpu() override;
GrContext* getContext() { return fContext; }
const GrContext* getContext() const { return fContext; }
/**
* Gets the capabilities of the draw target.
*/
const GrDrawTargetCaps* caps() const { return fCaps.get(); }
GrPathRendering* pathRendering() { return fPathRendering.get(); }
// Called by GrContext when the underlying backend context has been destroyed.
// GrGpu should use this to ensure that no backend API calls will be made from
// here onward, including in its destructor. Subclasses should call
// INHERITED::contextAbandoned() if they override this.
virtual void contextAbandoned();
/**
* The GrGpu object normally assumes that no outsider is setting state
* within the underlying 3D API's context/device/whatever. This call informs
* the GrGpu that the state was modified and it shouldn't make assumptions
* about the state.
*/
void markContextDirty(uint32_t state = kAll_GrBackendState) { fResetBits |= state; }
/**
* Creates a texture object. If kRenderTarget_GrSurfaceFlag the texture can
* be used as a render target by calling GrTexture::asRenderTarget(). Not all
* pixel configs can be used as render targets. Support for configs as textures
* or render targets can be checked using GrDrawTargetCaps.
*
* @param desc describes the texture to be created.
* @param budgeted does this texture count against the resource cache budget?
* @param srcData texel data to load texture. Begins with full-size
* palette data for paletted textures. For compressed
* formats it contains the compressed pixel data. Otherwise,
* it contains width*height texels. If NULL texture data
* is uninitialized.
* @param rowBytes the number of bytes between consecutive rows. Zero
* means rows are tightly packed. This field is ignored
* for compressed formats.
*
* @return The texture object if successful, otherwise NULL.
*/
GrTexture* createTexture(const GrSurfaceDesc& desc, bool budgeted,
const void* srcData, size_t rowBytes);
/**
* Implements GrContext::wrapBackendTexture
*/
GrTexture* wrapBackendTexture(const GrBackendTextureDesc&);
/**
* Implements GrContext::wrapBackendTexture
*/
GrRenderTarget* wrapBackendRenderTarget(const GrBackendRenderTargetDesc&);
/**
* Creates a vertex buffer.
*
* @param size size in bytes of the vertex buffer
* @param dynamic hints whether the data will be frequently changed
* by either GrVertexBuffer::map() or
* GrVertexBuffer::updateData().
*
* @return The vertex buffer if successful, otherwise NULL.
*/
GrVertexBuffer* createVertexBuffer(size_t size, bool dynamic);
/**
* Creates an index buffer.
*
* @param size size in bytes of the index buffer
* @param dynamic hints whether the data will be frequently changed
* by either GrIndexBuffer::map() or
* GrIndexBuffer::updateData().
*
* @return The index buffer if successful, otherwise NULL.
*/
GrIndexBuffer* createIndexBuffer(size_t size, bool dynamic);
/**
* Resolves MSAA.
*/
void resolveRenderTarget(GrRenderTarget* target);
/**
* Gets a preferred 8888 config to use for writing/reading pixel data to/from a surface with
* config surfaceConfig. The returned config must have at least as many bits per channel as the
* readConfig or writeConfig param.
*/
virtual GrPixelConfig preferredReadPixelsConfig(GrPixelConfig readConfig,
GrPixelConfig surfaceConfig) const {
return readConfig;
}
virtual GrPixelConfig preferredWritePixelsConfig(GrPixelConfig writeConfig,
GrPixelConfig surfaceConfig) const {
return writeConfig;
}
/**
* Called before uploading writing pixels to a GrTexture when the src pixel config doesn't
* match the texture's config.
*/
virtual bool canWriteTexturePixels(const GrTexture*, GrPixelConfig srcConfig) const = 0;
/**
* OpenGL's readPixels returns the result bottom-to-top while the skia
* API is top-to-bottom. Thus we have to do a y-axis flip. The obvious
* solution is to have the subclass do the flip using either the CPU or GPU.
* However, the caller (GrContext) may have transformations to apply and can
* simply fold in the y-flip for free. On the other hand, the subclass may
* be able to do it for free itself. For example, the subclass may have to
* do memcpys to handle rowBytes that aren't tight. It could do the y-flip
* concurrently.
*
* This function returns true if a y-flip is required to put the pixels in
* top-to-bottom order and the subclass cannot do it for free.
*
* See read pixels for the params
* @return true if calling readPixels with the same set of params will
* produce bottom-to-top data
*/
virtual bool readPixelsWillPayForYFlip(GrRenderTarget* renderTarget,
int left, int top,
int width, int height,
GrPixelConfig config,
size_t rowBytes) const = 0;
/**
* This should return true if reading a NxM rectangle of pixels from a
* render target is faster if the target has dimensons N and M and the read
* rectangle has its top-left at 0,0.
*/
virtual bool fullReadPixelsIsFasterThanPartial() const { return false; };
/**
* Reads a rectangle of pixels from a render target.
*
* @param renderTarget the render target to read from. NULL means the
* current render target.
* @param left left edge of the rectangle to read (inclusive)
* @param top top edge of the rectangle to read (inclusive)
* @param width width of rectangle to read in pixels.
* @param height height of rectangle to read in pixels.
* @param config the pixel config of the destination buffer
* @param buffer memory to read the rectangle into.
* @param rowBytes the number of bytes between consecutive rows. Zero
* means rows are tightly packed.
* @param invertY buffer should be populated bottom-to-top as opposed
* to top-to-bottom (skia's usual order)
*
* @return true if the read succeeded, false if not. The read can fail
* because of a unsupported pixel config or because no render
* target is currently set.
*/
bool readPixels(GrRenderTarget* renderTarget,
int left, int top, int width, int height,
GrPixelConfig config, void* buffer, size_t rowBytes);
/**
* Updates the pixels in a rectangle of a texture.
*
* @param left left edge of the rectangle to write (inclusive)
* @param top top edge of the rectangle to write (inclusive)
* @param width width of rectangle to write in pixels.
* @param height height of rectangle to write in pixels.
* @param config the pixel config of the source buffer
* @param buffer memory to read pixels from
* @param rowBytes number of bytes between consecutive rows. Zero
* means rows are tightly packed.
*/
bool writeTexturePixels(GrTexture* texture,
int left, int top, int width, int height,
GrPixelConfig config, const void* buffer,
size_t rowBytes);
/**
* Clear the passed in render target. Ignores the draw state and clip. Clears the whole thing if
* rect is NULL, otherwise just the rect. If canIgnoreRect is set then the entire render target
* can be optionally cleared.
*/
void clear(const SkIRect* rect, GrColor color, bool canIgnoreRect,GrRenderTarget* renderTarget);
void clearStencilClip(const SkIRect& rect, bool insideClip, GrRenderTarget* renderTarget);
/**
* Discards the contents render target. NULL indicates that the current render target should
* be discarded.
**/
virtual void discard(GrRenderTarget* = NULL) = 0;
/**
* This is can be called before allocating a texture to be a dst for copySurface. It will
* populate the origin, config, and flags fields of the desc such that copySurface can
* efficiently succeed. It should only succeed if it can allow copySurface to perform a copy
* that would be more effecient than drawing the src to a dst render target.
*/
virtual bool initCopySurfaceDstDesc(const GrSurface* src, GrSurfaceDesc* desc) = 0;
// After the client interacts directly with the 3D context state the GrGpu
// must resync its internal state and assumptions about 3D context state.
// Each time this occurs the GrGpu bumps a timestamp.
// state of the 3D context
// At 10 resets / frame and 60fps a 64bit timestamp will overflow in about
// a billion years.
typedef uint64_t ResetTimestamp;
// This timestamp is always older than the current timestamp
static const ResetTimestamp kExpiredTimestamp = 0;
// Returns a timestamp based on the number of times the context was reset.
// This timestamp can be used to lazily detect when cached 3D context state
// is dirty.
ResetTimestamp getResetTimestamp() const { return fResetTimestamp; }
virtual void buildProgramDesc(GrProgramDesc*,
const GrPrimitiveProcessor&,
const GrPipeline&,
const GrBatchTracker&) const = 0;
// Called to determine whether a copySurface call would succeed or not. Derived
// classes must keep this consistent with their implementation of onCopySurface(). Fallbacks
// to issuing a draw from the src to dst take place at the GrDrawTarget level and this function
// should only return true if a faster copy path exists. The rect and point are pre-clipped. The
// src rect and implied dst rect are guaranteed to be within the src/dst bounds and non-empty.
virtual bool canCopySurface(const GrSurface* dst,
const GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint) = 0;
// Called to perform a surface to surface copy. Fallbacks to issuing a draw from the src to dst
// take place at the GrDrawTarget level and this function implement faster copy paths. The rect
// and point are pre-clipped. The src rect and implied dst rect are guaranteed to be within the
// src/dst bounds and non-empty.
virtual bool copySurface(GrSurface* dst,
GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint) = 0;
// Called before certain draws in order to guarantee coherent results from dst reads.
virtual void xferBarrier(GrXferBarrierType) = 0;
struct DrawArgs {
DrawArgs(const GrPrimitiveProcessor* primProc,
const GrPipeline* pipeline,
const GrProgramDesc* desc,
const GrBatchTracker* batchTracker)
: fPrimitiveProcessor(primProc)
, fPipeline(pipeline)
, fDesc(desc)
, fBatchTracker(batchTracker) {
SkASSERT(primProc && pipeline && desc && batchTracker);
}
const GrPrimitiveProcessor* fPrimitiveProcessor;
const GrPipeline* fPipeline;
const GrProgramDesc* fDesc;
const GrBatchTracker* fBatchTracker;
};
void draw(const DrawArgs&, const GrVertices&);
/** None of these params are optional, pointers used just to avoid making copies. */
struct StencilPathState {
bool fUseHWAA;
GrRenderTarget* fRenderTarget;
const SkMatrix* fViewMatrix;
const GrStencilSettings* fStencil;
const GrScissorState* fScissor;
};
void stencilPath(const GrPath*, const StencilPathState&);
void drawPath(const DrawArgs&, const GrPath*, const GrStencilSettings&);
void drawPaths(const DrawArgs&,
const GrPathRange*,
const void* indices,
GrDrawTarget::PathIndexType,
const float transformValues[],
GrDrawTarget::PathTransformType,
int count,
const GrStencilSettings&);
///////////////////////////////////////////////////////////////////////////
// Debugging and Stats
class Stats {
public:
#if GR_GPU_STATS
Stats() { this->reset(); }
void reset() {
fRenderTargetBinds = 0;
fShaderCompilations = 0;
fTextureCreates = 0;
fTextureUploads = 0;
fStencilAttachmentCreates = 0;
}
int renderTargetBinds() const { return fRenderTargetBinds; }
void incRenderTargetBinds() { fRenderTargetBinds++; }
int shaderCompilations() const { return fShaderCompilations; }
void incShaderCompilations() { fShaderCompilations++; }
int textureCreates() const { return fTextureCreates; }
void incTextureCreates() { fTextureCreates++; }
int textureUploads() const { return fTextureUploads; }
void incTextureUploads() { fTextureUploads++; }
void incStencilAttachmentCreates() { fStencilAttachmentCreates++; }
void dump(SkString*);
private:
int fRenderTargetBinds;
int fShaderCompilations;
int fTextureCreates;
int fTextureUploads;
int fStencilAttachmentCreates;
#else
void dump(SkString*) {};
void incRenderTargetBinds() {}
void incShaderCompilations() {}
void incTextureCreates() {}
void incTextureUploads() {}
void incStencilAttachmentCreates() {}
#endif
};
Stats* stats() { return &fStats; }
/**
* Called at start and end of gpu trace marking
* GR_CREATE_GPU_TRACE_MARKER(marker_str, target) will automatically call these at the start
* and end of a code block respectively
*/
void addGpuTraceMarker(const GrGpuTraceMarker* marker);
void removeGpuTraceMarker(const GrGpuTraceMarker* marker);
/**
* Takes the current active set of markers and stores them for later use. Any current marker
* in the active set is removed from the active set and the targets remove function is called.
* These functions do not work as a stack so you cannot call save a second time before calling
* restore. Also, it is assumed that when restore is called the current active set of markers
* is empty. When the stored markers are added back into the active set, the targets add marker
* is called.
*/
void saveActiveTraceMarkers();
void restoreActiveTraceMarkers();
// Given a rt, find or create a stencil buffer and attach it
bool attachStencilAttachmentToRenderTarget(GrRenderTarget* target);
protected:
// Functions used to map clip-respecting stencil tests into normal
// stencil funcs supported by GPUs.
static GrStencilFunc ConvertStencilFunc(bool stencilInClip,
GrStencilFunc func);
static void ConvertStencilFuncAndMask(GrStencilFunc func,
bool clipInStencil,
unsigned int clipBit,
unsigned int userBits,
unsigned int* ref,
unsigned int* mask);
const GrTraceMarkerSet& getActiveTraceMarkers() const { return fActiveTraceMarkers; }
Stats fStats;
SkAutoTDelete<GrPathRendering> fPathRendering;
// Subclass must initialize this in its constructor.
SkAutoTUnref<const GrDrawTargetCaps> fCaps;
private:
// called when the 3D context state is unknown. Subclass should emit any
// assumed 3D context state and dirty any state cache.
virtual void onResetContext(uint32_t resetBits) = 0;
// overridden by backend-specific derived class to create objects.
// Texture size and sample size will have already been validated in base class before
// onCreateTexture/CompressedTexture are called.
virtual GrTexture* onCreateTexture(const GrSurfaceDesc& desc,
GrGpuResource::LifeCycle lifeCycle,
const void* srcData, size_t rowBytes) = 0;
virtual GrTexture* onCreateCompressedTexture(const GrSurfaceDesc& desc,
GrGpuResource::LifeCycle lifeCycle,
const void* srcData) = 0;
virtual GrTexture* onWrapBackendTexture(const GrBackendTextureDesc&) = 0;
virtual GrRenderTarget* onWrapBackendRenderTarget(const GrBackendRenderTargetDesc&) = 0;
virtual GrVertexBuffer* onCreateVertexBuffer(size_t size, bool dynamic) = 0;
virtual GrIndexBuffer* onCreateIndexBuffer(size_t size, bool dynamic) = 0;
// overridden by backend-specific derived class to perform the clear.
virtual void onClear(GrRenderTarget*, const SkIRect* rect, GrColor color,
bool canIgnoreRect) = 0;
// Overridden by backend specific classes to perform a clear of the stencil clip bits. This is
// ONLY used by the the clip target
virtual void onClearStencilClip(GrRenderTarget*, const SkIRect& rect, bool insideClip) = 0;
// overridden by backend-specific derived class to perform the draw call.
virtual void onDraw(const DrawArgs&, const GrNonInstancedVertices&) = 0;
virtual void onStencilPath(const GrPath*, const StencilPathState&) = 0;
virtual void onDrawPath(const DrawArgs&, const GrPath*, const GrStencilSettings&) = 0;
virtual void onDrawPaths(const DrawArgs&,
const GrPathRange*,
const void* indices,
GrDrawTarget::PathIndexType,
const float transformValues[],
GrDrawTarget::PathTransformType,
int count,
const GrStencilSettings&) = 0;
// overridden by backend-specific derived class to perform the read pixels.
virtual bool onReadPixels(GrRenderTarget* target,
int left, int top, int width, int height,
GrPixelConfig,
void* buffer,
size_t rowBytes) = 0;
// overridden by backend-specific derived class to perform the texture update
virtual bool onWriteTexturePixels(GrTexture* texture,
int left, int top, int width, int height,
GrPixelConfig config, const void* buffer,
size_t rowBytes) = 0;
// overridden by backend-specific derived class to perform the resolve
virtual void onResolveRenderTarget(GrRenderTarget* target) = 0;
// width and height may be larger than rt (if underlying API allows it).
// Should attach the SB to the RT. Returns false if compatible sb could
// not be created.
virtual bool createStencilAttachmentForRenderTarget(GrRenderTarget*, int width, int height) = 0;
// attaches an existing SB to an existing RT.
virtual bool attachStencilAttachmentToRenderTarget(GrStencilAttachment*, GrRenderTarget*) = 0;
// clears target's entire stencil buffer to 0
virtual void clearStencil(GrRenderTarget* target) = 0;
virtual void didAddGpuTraceMarker() = 0;
virtual void didRemoveGpuTraceMarker() = 0;
void resetContext() {
this->onResetContext(fResetBits);
fResetBits = 0;
++fResetTimestamp;
}
void handleDirtyContext() {
if (fResetBits) {
this->resetContext();
}
}
ResetTimestamp fResetTimestamp;
uint32_t fResetBits;
// To keep track that we always have at least as many debug marker adds as removes
int fGpuTraceMarkerCount;
GrTraceMarkerSet fActiveTraceMarkers;
GrTraceMarkerSet fStoredTraceMarkers;
// The context owns us, not vice-versa, so this ptr is not ref'ed by Gpu.
GrContext* fContext;
typedef SkRefCnt INHERITED;
};
#endif
|