1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
|
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrDrawState_DEFINED
#define GrDrawState_DEFINED
#include "GrColor.h"
#include "GrMatrix.h"
#include "GrNoncopyable.h"
#include "GrSamplerState.h"
#include "GrStencil.h"
#include "SkXfermode.h"
class GrRenderTarget;
class GrTexture;
struct GrDrawState {
/**
* Number of texture stages. Each stage takes as input a color and
* 2D texture coordinates. The color input to the first enabled stage is the
* per-vertex color or the constant color (setColor/setAlpha) if there are
* no per-vertex colors. For subsequent stages the input color is the output
* color from the previous enabled stage. The output color of each stage is
* the input color modulated with the result of a texture lookup. Texture
* lookups are specified by a texture a sampler (setSamplerState). Texture
* coordinates for each stage come from the vertices based on a
* GrVertexLayout bitfield. The output fragment color is the output color of
* the last enabled stage. The presence or absence of texture coordinates
* for each stage in the vertex layout indicates whether a stage is enabled
* or not.
*/
enum {
kNumStages = 3,
kMaxTexCoords = kNumStages
};
/**
* Bitfield used to indicate a set of stages.
*/
typedef uint32_t StageMask;
GR_STATIC_ASSERT(sizeof(StageMask)*8 >= GrDrawState::kNumStages);
GrDrawState() {
// make sure any pad is zero for memcmp
// all GrDrawState members should default to something
// valid by the memset
memset(this, 0, sizeof(GrDrawState));
// memset exceptions
fColorFilterMode = SkXfermode::kDstIn_Mode;
fFirstCoverageStage = kNumStages;
// pedantic assertion that our ptrs will
// be NULL (0 ptr is mem addr 0)
GrAssert((intptr_t)(void*)NULL == 0LL);
GrAssert(fStencilSettings.isDisabled());
fFirstCoverageStage = kNumStages;
}
///////////////////////////////////////////////////////////////////////////
/// @name Color
////
/**
* Sets color for next draw to a premultiplied-alpha color.
*
* @param color the color to set.
*/
void setColor(GrColor color) { fColor = color; }
GrColor getColor() const { return fColor; }
/**
* Sets the color to be used for the next draw to be
* (r,g,b,a) = (alpha, alpha, alpha, alpha).
*
* @param alpha The alpha value to set as the color.
*/
void setAlpha(uint8_t a) {
this->setColor((a << 24) | (a << 16) | (a << 8) | a);
}
/**
* Add a color filter that can be represented by a color and a mode. Applied
* after color-computing texture stages.
*/
void setColorFilter(GrColor c, SkXfermode::Mode mode) {
fColorFilterColor = c;
fColorFilterMode = mode;
}
GrColor getColorFilterColor() const { return fColorFilterColor; }
SkXfermode::Mode getColorFilterMode() const { return fColorFilterMode; }
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Textures
////
/**
* Sets the texture used at the next drawing call
*
* @param stage The texture stage for which the texture will be set
*
* @param texture The texture to set. Can be NULL though there is no
* advantage to settings a NULL texture if doing non-textured drawing
*/
void setTexture(int stage, GrTexture* texture) {
GrAssert((unsigned)stage < kNumStages);
fTextures[stage] = texture;
}
/**
* Retrieves the currently set texture.
*
* @return The currently set texture. The return value will be NULL if no
* texture has been set, NULL was most recently passed to
* setTexture, or the last setTexture was destroyed.
*/
const GrTexture* getTexture(int stage) const {
GrAssert((unsigned)stage < kNumStages);
return fTextures[stage];
}
GrTexture* getTexture(int stage) {
GrAssert((unsigned)stage < kNumStages);
return fTextures[stage];
}
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Samplers
////
/**
* Returns the current sampler for a stage.
*/
const GrSamplerState& getSampler(int stage) const {
GrAssert((unsigned)stage < kNumStages);
return fSamplerStates[stage];
}
/**
* Writable pointer to a stage's sampler.
*/
GrSamplerState* sampler(int stage) {
GrAssert((unsigned)stage < kNumStages);
return fSamplerStates + stage;
}
/**
* Preconcats the matrix of all samplers in the mask with the same matrix.
*/
void preConcatSamplerMatrices(StageMask stageMask, const GrMatrix& matrix) {
GrAssert(!(stageMask & kIllegalStageMaskBits));
for (int i = 0; i < kNumStages; ++i) {
if ((1 << i) & stageMask) {
fSamplerStates[i].preConcatMatrix(matrix);
}
}
}
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Coverage / Color Stages
////
/**
* A common pattern is to compute a color with the initial stages and then
* modulate that color by a coverage value in later stage(s) (AA, mask-
* filters, glyph mask, etc). Color-filters, xfermodes, etc should be
* computed based on the pre-coverage-modulated color. The division of
* stages between color-computing and coverage-computing is specified by
* this method. Initially this is kNumStages (all stages
* are color-computing).
*/
void setFirstCoverageStage(int firstCoverageStage) {
GrAssert((unsigned)firstCoverageStage <= kNumStages);
fFirstCoverageStage = firstCoverageStage;
}
/**
* Gets the index of the first coverage-computing stage.
*/
int getFirstCoverageStage() const {
return fFirstCoverageStage;
}
///@}
///////////////////////////////////////////////////////////////////////////
/// @name Blending
////
/**
* Sets the blending function coeffecients.
*
* The blend function will be:
* D' = sat(S*srcCoef + D*dstCoef)
*
* where D is the existing destination color, S is the incoming source
* color, and D' is the new destination color that will be written. sat()
* is the saturation function.
*
* @param srcCoef coeffecient applied to the src color.
* @param dstCoef coeffecient applied to the dst color.
*/
void setBlendFunc(GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff) {
fSrcBlend = srcCoeff;
fDstBlend = dstCoeff;
#if GR_DEBUG
switch (dstCoeff) {
case kDC_BlendCoeff:
case kIDC_BlendCoeff:
case kDA_BlendCoeff:
case kIDA_BlendCoeff:
GrPrintf("Unexpected dst blend coeff. Won't work correctly with"
"coverage stages.\n");
break;
default:
break;
}
switch (srcCoeff) {
case kSC_BlendCoeff:
case kISC_BlendCoeff:
case kSA_BlendCoeff:
case kISA_BlendCoeff:
GrPrintf("Unexpected src blend coeff. Won't work correctly with"
"coverage stages.\n");
break;
default:
break;
}
#endif
}
GrBlendCoeff getSrcBlendCoeff() const { return fSrcBlend; }
GrBlendCoeff getDstBlendCoeff() const { return fDstBlend; }
void getDstBlendCoeff(GrBlendCoeff* srcBlendCoeff,
GrBlendCoeff* dstBlendCoeff) const {
*srcBlendCoeff = fSrcBlend;
*dstBlendCoeff = fDstBlend;
}
/**
* Sets the blending function constant referenced by the following blending
* coeffecients:
* kConstC_BlendCoeff
* kIConstC_BlendCoeff
* kConstA_BlendCoeff
* kIConstA_BlendCoeff
*
* @param constant the constant to set
*/
void setBlendConstant(GrColor constant) { fBlendConstant = constant; }
/**
* Retrieves the last value set by setBlendConstant()
* @return the blending constant value
*/
GrColor getBlendConstant() const { return fBlendConstant; }
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name View Matrix
////
/**
* Sets the matrix applied to veretx positions.
*
* In the post-view-matrix space the rectangle [0,w]x[0,h]
* fully covers the render target. (w and h are the width and height of the
* the rendertarget.)
*/
void setViewMatrix(const GrMatrix& m) { fViewMatrix = m; }
/**
* Gets a writable pointer to the view matrix.
*/
GrMatrix* viewMatrix() { return &fViewMatrix; }
/**
* Multiplies the current view matrix by a matrix
*
* After this call V' = V*m where V is the old view matrix,
* m is the parameter to this function, and V' is the new view matrix.
* (We consider positions to be column vectors so position vector p is
* transformed by matrix X as p' = X*p.)
*
* @param m the matrix used to modify the view matrix.
*/
void preConcatViewMatrix(const GrMatrix& m) { fViewMatrix.preConcat(m); }
/**
* Multiplies the current view matrix by a matrix
*
* After this call V' = m*V where V is the old view matrix,
* m is the parameter to this function, and V' is the new view matrix.
* (We consider positions to be column vectors so position vector p is
* transformed by matrix X as p' = X*p.)
*
* @param m the matrix used to modify the view matrix.
*/
void postConcatViewMatrix(const GrMatrix& m) { fViewMatrix.postConcat(m); }
/**
* Retrieves the current view matrix
* @return the current view matrix.
*/
const GrMatrix& getViewMatrix() const { return fViewMatrix; }
/**
* Retrieves the inverse of the current view matrix.
*
* If the current view matrix is invertible, return true, and if matrix
* is non-null, copy the inverse into it. If the current view matrix is
* non-invertible, return false and ignore the matrix parameter.
*
* @param matrix if not null, will receive a copy of the current inverse.
*/
bool getViewInverse(GrMatrix* matrix) const {
// TODO: determine whether we really need to leave matrix unmodified
// at call sites when inversion fails.
GrMatrix inverse;
if (fViewMatrix.invert(&inverse)) {
if (matrix) {
*matrix = inverse;
}
return true;
}
return false;
}
class AutoViewMatrixRestore : public ::GrNoncopyable {
public:
AutoViewMatrixRestore() : fDrawState(NULL) {}
AutoViewMatrixRestore(GrDrawState* ds, const GrMatrix& newMatrix) {
fDrawState = NULL;
this->set(ds, newMatrix);
}
AutoViewMatrixRestore(GrDrawState* ds) {
fDrawState = NULL;
this->set(ds);
}
~AutoViewMatrixRestore() {
this->set(NULL, GrMatrix::I());
}
void set(GrDrawState* ds, const GrMatrix& newMatrix) {
if (NULL != fDrawState) {
fDrawState->setViewMatrix(fSavedMatrix);
}
if (NULL != ds) {
fSavedMatrix = ds->getViewMatrix();
ds->setViewMatrix(newMatrix);
}
fDrawState = ds;
}
void set(GrDrawState* ds) {
if (NULL != fDrawState) {
fDrawState->setViewMatrix(fSavedMatrix);
}
if (NULL != ds) {
fSavedMatrix = ds->getViewMatrix();
}
fDrawState = ds;
}
private:
GrDrawState* fDrawState;
GrMatrix fSavedMatrix;
};
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Render Target
////
/**
* Sets the rendertarget used at the next drawing call
*
* @param target The render target to set.
*/
void setRenderTarget(GrRenderTarget* target) { fRenderTarget = target; }
/**
* Retrieves the currently set rendertarget.
*
* @return The currently set render target.
*/
const GrRenderTarget* getRenderTarget() const { return fRenderTarget; }
GrRenderTarget* getRenderTarget() { return fRenderTarget; }
class AutoRenderTargetRestore : public ::GrNoncopyable {
public:
AutoRenderTargetRestore() : fDrawState(NULL), fSavedTarget(NULL) {}
AutoRenderTargetRestore(GrDrawState* ds, GrRenderTarget* newTarget) {
fDrawState = NULL;
this->set(ds, newTarget);
}
~AutoRenderTargetRestore() { this->set(NULL, NULL); }
void set(GrDrawState* ds, GrRenderTarget* newTarget) {
if (NULL != fDrawState) {
fDrawState->setRenderTarget(fSavedTarget);
}
if (NULL != ds) {
fSavedTarget = ds->getRenderTarget();
ds->setRenderTarget(newTarget);
}
fDrawState = ds;
}
private:
GrDrawState* fDrawState;
GrRenderTarget* fSavedTarget;
};
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Stencil
////
/**
* Sets the stencil settings to use for the next draw.
* Changing the clip has the side-effect of possibly zeroing
* out the client settable stencil bits. So multipass algorithms
* using stencil should not change the clip between passes.
* @param settings the stencil settings to use.
*/
void setStencil(const GrStencilSettings& settings) {
fStencilSettings = settings;
}
/**
* Shortcut to disable stencil testing and ops.
*/
void disableStencil() {
fStencilSettings.setDisabled();
}
const GrStencilSettings& getStencil() const { return fStencilSettings; }
GrStencilSettings* stencil() { return &fStencilSettings; }
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Color Matrix
////
/**
* Sets the color matrix to use for the next draw.
* @param matrix the 5x4 matrix to apply to the incoming color
*/
void setColorMatrix(const float matrix[20]) {
memcpy(fColorMatrix, matrix, sizeof(fColorMatrix));
}
const float* getColorMatrix() const { return fColorMatrix; }
/// @}
///////////////////////////////////////////////////////////////////////////
// @name Edge AA
// There are two ways to perform antialiasing using edge equations. One
// is to specify an (linear or quadratic) edge eq per-vertex. This requires
// splitting vertices shared by primitives.
//
// The other is via setEdgeAAData which sets a set of edges and each
// is tested against all the edges.
////
/**
* When specifying edges as vertex data this enum specifies what type of
* edges are in use. The edges are always 4 GrScalars in memory, even when
* the edge type requires fewer than 4.
*/
enum VertexEdgeType {
/* 1-pixel wide line
2D implicit line eq (a*x + b*y +c = 0). 4th component unused */
kHairLine_EdgeType,
/* 1-pixel wide quadratic
u^2-v canonical coords (only 2 components used) */
kHairQuad_EdgeType
};
/**
* Determines the interpretation per-vertex edge data when the
* kEdge_VertexLayoutBit is set (see GrDrawTarget). When per-vertex edges
* are not specified the value of this setting has no effect.
*/
void setVertexEdgeType(VertexEdgeType type) {
fVertexEdgeType = type;
}
VertexEdgeType getVertexEdgeType() const {
return fVertexEdgeType;
}
/**
* The absolute maximum number of edges that may be specified for
* a single draw call when performing edge antialiasing. This is used for
* the size of several static buffers, so implementations of getMaxEdges()
* (below) should clamp to this value.
*/
enum {
// TODO: this should be 32 when GrTesselatedPathRenderer is used
// Visual Studio 2010 does not permit a member array of size 0.
kMaxEdges = 1
};
class Edge {
public:
Edge() {}
Edge(float x, float y, float z) : fX(x), fY(y), fZ(z) {}
GrPoint intersect(const Edge& other) {
return GrPoint::Make(
SkFloatToScalar((fY * other.fZ - other.fY * fZ) /
(fX * other.fY - other.fX * fY)),
SkFloatToScalar((fX * other.fZ - other.fX * fZ) /
(other.fX * fY - fX * other.fY)));
}
float fX, fY, fZ;
};
/**
* Sets the edge data required for edge antialiasing.
*
* @param edges 3 * numEdges float values, representing the edge
* equations in Ax + By + C form
*/
void setEdgeAAData(const Edge* edges, int numEdges) {
GrAssert(numEdges <= GrDrawState::kMaxEdges);
memcpy(fEdgeAAEdges, edges, numEdges * sizeof(GrDrawState::Edge));
fEdgeAANumEdges = numEdges;
}
int getNumAAEdges() const { return fEdgeAANumEdges; }
const Edge* getAAEdges() const { return fEdgeAAEdges; }
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name State Flags
////
/**
* Flags that affect rendering. Controlled using enable/disableState(). All
* default to disabled.
*/
enum StateBits {
/**
* Perform dithering. TODO: Re-evaluate whether we need this bit
*/
kDither_StateBit = 0x01,
/**
* Perform HW anti-aliasing. This means either HW FSAA, if supported
* by the render target, or smooth-line rendering if a line primitive
* is drawn and line smoothing is supported by the 3D API.
*/
kHWAntialias_StateBit = 0x02,
/**
* Draws will respect the clip, otherwise the clip is ignored.
*/
kClip_StateBit = 0x04,
/**
* Disables writing to the color buffer. Useful when performing stencil
* operations.
*/
kNoColorWrites_StateBit = 0x08,
/**
* Modifies the behavior of edge AA specified by setEdgeAA. If set,
* will test edge pairs for convexity when rasterizing. Set this if the
* source polygon is non-convex.
*/
kEdgeAAConcave_StateBit = 0x10,
/**
* Draws will apply the color matrix, otherwise the color matrix is
* ignored.
*/
kColorMatrix_StateBit = 0x20,
// Users of the class may add additional bits to the vector
kDummyStateBit,
kLastPublicStateBit = kDummyStateBit-1,
};
void resetStateFlags() {
fFlagBits = 0;
}
/**
* Enable render state settings.
*
* @param flags bitfield of StateBits specifing the states to enable
*/
void enableState(uint32_t stateBits) {
fFlagBits |= stateBits;
}
/**
* Disable render state settings.
*
* @param flags bitfield of StateBits specifing the states to disable
*/
void disableState(uint32_t stateBits) {
fFlagBits &= ~(stateBits);
}
bool isDitherState() const {
return 0 != (fFlagBits & kDither_StateBit);
}
bool isHWAntialiasState() const {
return 0 != (fFlagBits & kHWAntialias_StateBit);
}
bool isClipState() const {
return 0 != (fFlagBits & kClip_StateBit);
}
bool isColorWriteDisabled() const {
return 0 != (fFlagBits & kNoColorWrites_StateBit);
}
bool isConcaveEdgeAAState() const {
return 0 != (fFlagBits & kEdgeAAConcave_StateBit);
}
bool isStateFlagEnabled(uint32_t stateBit) const {
return 0 != (stateBit & fFlagBits);
}
void copyStateFlags(const GrDrawState& ds) {
fFlagBits = ds.fFlagBits;
}
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Face Culling
////
enum DrawFace {
kBoth_DrawFace,
kCCW_DrawFace,
kCW_DrawFace,
};
/**
* Controls whether clockwise, counterclockwise, or both faces are drawn.
* @param face the face(s) to draw.
*/
void setDrawFace(DrawFace face) {
fDrawFace = face;
}
/**
* Gets whether the target is drawing clockwise, counterclockwise,
* or both faces.
* @return the current draw face(s).
*/
DrawFace getDrawFace() const {
return fDrawFace;
}
/// @}
///////////////////////////////////////////////////////////////////////////
// Most stages are usually not used, so conditionals here
// reduce the expected number of bytes touched by 50%.
bool operator ==(const GrDrawState& s) const {
if (memcmp(this, &s, this->leadingBytes())) return false;
for (int i = 0; i < kNumStages; i++) {
if (fTextures[i] &&
memcmp(&this->fSamplerStates[i], &s.fSamplerStates[i],
sizeof(GrSamplerState))) {
return false;
}
}
return true;
}
bool operator !=(const GrDrawState& s) const { return !(*this == s); }
// Most stages are usually not used, so conditionals here
// reduce the expected number of bytes touched by 50%.
GrDrawState& operator =(const GrDrawState& s) {
memcpy(this, &s, this->leadingBytes());
for (int i = 0; i < kNumStages; i++) {
if (s.fTextures[i]) {
memcpy(&this->fSamplerStates[i], &s.fSamplerStates[i],
sizeof(GrSamplerState));
}
}
return *this;
}
private:
static const StageMask kIllegalStageMaskBits = ~((1 << kNumStages)-1);
uint8_t fFlagBits;
GrBlendCoeff fSrcBlend : 8;
GrBlendCoeff fDstBlend : 8;
DrawFace fDrawFace : 8;
uint8_t fFirstCoverageStage;
SkXfermode::Mode fColorFilterMode : 8;
GrColor fBlendConstant;
GrTexture* fTextures[kNumStages];
GrRenderTarget* fRenderTarget;
GrColor fColor;
GrColor fColorFilterColor;
float fColorMatrix[20];
GrStencilSettings fStencilSettings;
GrMatrix fViewMatrix;
// @{ Data for GrTesselatedPathRenderer
// TODO: currently ignored in copying & comparison for performance.
// Must be considered if GrTesselatedPathRenderer is being used.
VertexEdgeType fVertexEdgeType;
int fEdgeAANumEdges;
Edge fEdgeAAEdges[kMaxEdges];
// @}
// This field must be last; it will not be copied or compared
// if the corresponding fTexture[] is NULL.
GrSamplerState fSamplerStates[kNumStages];
size_t leadingBytes() const {
// Can't use offsetof() with non-POD types, so stuck with pointer math.
// TODO: ignores GrTesselatedPathRenderer data structures. We don't
// have a compile-time flag that lets us know if it's being used, and
// checking at runtime seems to cost 5% performance.
return (size_t) ((unsigned char*)&fEdgeAANumEdges -
(unsigned char*)&fFlagBits);
}
};
#endif
|