aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/GrDrawState.h
blob: dc3fdfe6a564534eacefc4df265095da649e7f5b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef GrDrawState_DEFINED
#define GrDrawState_DEFINED

#include "GrBackendEffectFactory.h"
#include "GrColor.h"
#include "GrEffectStage.h"
#include "GrRefCnt.h"
#include "GrRenderTarget.h"
#include "GrStencil.h"
#include "GrTemplates.h"
#include "GrTexture.h"
#include "effects/GrSimpleTextureEffect.h"

#include "SkMatrix.h"
#include "SkXfermode.h"

class GrPaint;

class GrDrawState : public GrRefCnt {
public:
    SK_DECLARE_INST_COUNT(GrDrawState)

    /**
     * Total number of effect stages. Each stage can host a GrEffect. A stage is enabled if it has a
     * GrEffect. The effect produces an output color in the fragment shader. It's inputs are the
     * output from the previous enabled stage and a position. The position is either derived from
     * the interpolated vertex positions or explicit per-vertex coords, depending upon the
     * GrVertexLayout used to draw.
     *
     * The stages are divided into two sets, color-computing and coverage-computing. The final color
     * stage produces the final pixel color. The coverage-computing stages function exactly as the
     * color-computing but the output of the final coverage stage is treated as a fractional pixel
     * coverage rather than as input to the src/dst color blend step.
     *
     * The input color to the first enabled color-stage is either the constant color or interpolated
     * per-vertex colors, depending upon GrVertexLayout. The input to the first coverage stage is
     * either a constant coverage (usually full-coverage), interpolated per-vertex coverage, or
     * edge-AA computed coverage. (This latter is going away as soon as it can be rewritten as a
     * GrEffect).
     *
     * See the documentation of kCoverageDrawing_StateBit for information about disabling the
     * the color / coverage distinction.
     *
     * Stages 0 through GrPaint::kTotalStages-1 are reserved for stages copied from the client's
     * GrPaint. Stages GrPaint::kTotalStages through kNumStages-2 are earmarked for use by
     * GrTextContext and GrPathRenderer-derived classes. kNumStages-1 is earmarked for clipping
     * by GrClipMaskManager.
     */
    enum {
        kNumStages = 5,
        kMaxTexCoords = kNumStages
    };

    GrDrawState() {
        this->reset();
    }

    GrDrawState(const GrDrawState& state) {
        *this = state;
    }

    virtual ~GrDrawState() {
        this->disableStages();
    }

    /**
     * Resets to the default state.
     * GrEffects will be removed from all stages.
     */
    void reset() {

        this->disableStages();

        fRenderTarget.reset(NULL);

        fCommon.fColor = 0xffffffff;
        fCommon.fViewMatrix.reset();
        fCommon.fSrcBlend = kOne_GrBlendCoeff;
        fCommon.fDstBlend = kZero_GrBlendCoeff;
        fCommon.fBlendConstant = 0x0;
        fCommon.fFlagBits = 0x0;
        fCommon.fVertexEdgeType = kHairLine_EdgeType;
        fCommon.fStencilSettings.setDisabled();
        fCommon.fFirstCoverageStage = kNumStages;
        fCommon.fCoverage = 0xffffffff;
        fCommon.fColorFilterMode = SkXfermode::kDst_Mode;
        fCommon.fColorFilterColor = 0x0;
        fCommon.fDrawFace = kBoth_DrawFace;
    }

    /**
     * Initializes the GrDrawState based on a GrPaint. Note that GrDrawState
     * encompasses more than GrPaint. Aspects of GrDrawState that have no
     * GrPaint equivalents are not modified. GrPaint has fewer stages than
     * GrDrawState. The extra GrDrawState stages are disabled.
     */
    void setFromPaint(const GrPaint& paint);

    ///////////////////////////////////////////////////////////////////////////
    /// @name Vertex Format
    ////

    /**
     * The format of vertices is represented as a bitfield of flags.
     * Flags that indicate the layout of vertex data. Vertices always contain
     * positions and may also contain up to GrDrawState::kMaxTexCoords sets
     * of 2D texture coordinates, per-vertex colors, and per-vertex coverage.
     * Each stage can
     * use any of the texture coordinates as its input texture coordinates or it
     * may use the positions as texture coordinates.
     *
     * If no texture coordinates are specified for a stage then the stage is
     * disabled.
     *
     * Only one type of texture coord can be specified per stage. For
     * example StageTexCoordVertexLayoutBit(0, 2) and
     * StagePosAsTexCoordVertexLayoutBit(0) cannot both be specified.
     *
     * The order in memory is always (position, texture coord 0, ..., color,
     * coverage) with any unused fields omitted. Note that this means that if
     * only texture coordinates 1 is referenced then there is no texture
     * coordinates 0 and the order would be (position, texture coordinate 1
     * [, color][, coverage]).
     */

    /**
     * Generates a bit indicating that a texture stage uses texture coordinates
     *
     * @param stageIdx    the stage that will use texture coordinates.
     * @param texCoordIdx the index of the texture coordinates to use
     *
     * @return the bit to add to a GrVertexLayout bitfield.
     */
    static int StageTexCoordVertexLayoutBit(int stageIdx, int texCoordIdx) {
        GrAssert(stageIdx < kNumStages);
        GrAssert(texCoordIdx < kMaxTexCoords);
        return 1 << (stageIdx + (texCoordIdx * kNumStages));
    }

    static bool StageUsesTexCoords(GrVertexLayout layout, int stageIdx);
    
private:
    // non-stage bits start at this index.
    static const int STAGE_BIT_CNT = kNumStages * kMaxTexCoords;
public:

    /**
     * Additional Bits that can be specified in GrVertexLayout.
     */
    enum VertexLayoutBits {
        /* vertices have colors (GrColor) */
        kColor_VertexLayoutBit              = 1 << (STAGE_BIT_CNT + 0),
        /* vertices have coverage (GrColor)
         */
        kCoverage_VertexLayoutBit           = 1 << (STAGE_BIT_CNT + 1),
        /* Use text vertices. (Pos and tex coords may be a different type for
         * text [GrGpuTextVertex vs GrPoint].)
         */
        kTextFormat_VertexLayoutBit         = 1 << (STAGE_BIT_CNT + 2),

        /* Each vertex specificies an edge. Distance to the edge is used to
         * compute a coverage. See GrDrawState::setVertexEdgeType().
         */
        kEdge_VertexLayoutBit               = 1 << (STAGE_BIT_CNT + 3),
        // for below assert
        kDummyVertexLayoutBit,
        kHighVertexLayoutBit = kDummyVertexLayoutBit - 1
    };
    // make sure we haven't exceeded the number of bits in GrVertexLayout.
    GR_STATIC_ASSERT(kHighVertexLayoutBit < ((uint64_t)1 << 8*sizeof(GrVertexLayout)));

    ////////////////////////////////////////////////////////////////////////////
    // Helpers for picking apart vertex layouts

    /**
     * Helper function to compute the size of a vertex from a vertex layout
     * @return size of a single vertex.
     */
    static size_t VertexSize(GrVertexLayout vertexLayout);

    /**
     * Helper function for determining the index of texture coordinates that
     * is input for a texture stage. Note that a stage may instead use positions
     * as texture coordinates, in which case the result of the function is
     * indistinguishable from the case when the stage is disabled.
     *
     * @param stageIdx      the stage to query
     * @param vertexLayout  layout to query
     *
     * @return the texture coordinate index or -1 if the stage doesn't use
     *         separate (non-position) texture coordinates.
     */
    static int VertexTexCoordsForStage(int stageIdx, GrVertexLayout vertexLayout);

    /**
     * Helper function to compute the offset of texture coordinates in a vertex
     * @return offset of texture coordinates in vertex layout or -1 if the
     *         layout has no texture coordinates. Will be 0 if positions are
     *         used as texture coordinates for the stage.
     */
    static int VertexStageCoordOffset(int stageIdx, GrVertexLayout vertexLayout);

    /**
     * Helper function to compute the offset of the color in a vertex
     * @return offset of color in vertex layout or -1 if the
     *         layout has no color.
     */
    static int VertexColorOffset(GrVertexLayout vertexLayout);

    /**
     * Helper function to compute the offset of the coverage in a vertex
     * @return offset of coverage in vertex layout or -1 if the
     *         layout has no coverage.
     */
    static int VertexCoverageOffset(GrVertexLayout vertexLayout);

     /**
      * Helper function to compute the offset of the edge pts in a vertex
      * @return offset of edge in vertex layout or -1 if the
      *         layout has no edge.
      */
     static int VertexEdgeOffset(GrVertexLayout vertexLayout);

    /**
     * Helper function to determine if vertex layout contains explicit texture
     * coordinates of some index.
     *
     * @param coordIndex    the tex coord index to query
     * @param vertexLayout  layout to query
     *
     * @return true if vertex specifies texture coordinates for the index,
     *              false otherwise.
     */
    static bool VertexUsesTexCoordIdx(int coordIndex,
                                      GrVertexLayout vertexLayout);

    /**
     * Helper function to compute the size of each vertex and the offsets of
     * texture coordinates and color. Determines tex coord offsets by tex coord
     * index rather than by stage. (Each stage can be mapped to any t.c. index
     * by StageTexCoordVertexLayoutBit.)
     *
     * @param vertexLayout          the layout to query
     * @param texCoordOffsetsByIdx  after return it is the offset of each
     *                              tex coord index in the vertex or -1 if
     *                              index isn't used. (optional)
     * @param colorOffset           after return it is the offset of the
     *                              color field in each vertex, or -1 if
     *                              there aren't per-vertex colors. (optional)
     * @param coverageOffset        after return it is the offset of the
     *                              coverage field in each vertex, or -1 if
     *                              there aren't per-vertex coeverages.
     *                              (optional)
     * @param edgeOffset            after return it is the offset of the
     *                              edge eq field in each vertex, or -1 if
     *                              there aren't per-vertex edge equations.
     *                              (optional)
     * @return size of a single vertex
     */
    static int VertexSizeAndOffsetsByIdx(GrVertexLayout vertexLayout,
                   int texCoordOffsetsByIdx[kMaxTexCoords],
                   int *colorOffset,
                   int *coverageOffset,
                   int* edgeOffset);

    /**
     * Helper function to compute the size of each vertex and the offsets of
     * texture coordinates and color. Determines tex coord offsets by stage
     * rather than by index. (Each stage can be mapped to any t.c. index
     * by StageTexCoordVertexLayoutBit.) If a stage uses positions for
     * tex coords then that stage's offset will be 0 (positions are always at 0).
     *
     * @param vertexLayout              the layout to query
     * @param texCoordOffsetsByStage    after return it is the offset of each
     *                                  tex coord index in the vertex or -1 if
     *                                  index isn't used. (optional)
     * @param colorOffset               after return it is the offset of the
     *                                  color field in each vertex, or -1 if
     *                                  there aren't per-vertex colors.
     *                                  (optional)
     * @param coverageOffset            after return it is the offset of the
     *                                  coverage field in each vertex, or -1 if
     *                                  there aren't per-vertex coeverages.
     *                                  (optional)
     * @param edgeOffset                after return it is the offset of the
     *                                  edge eq field in each vertex, or -1 if
     *                                  there aren't per-vertex edge equations.
     *                                  (optional)
     * @return size of a single vertex
     */
    static int VertexSizeAndOffsetsByStage(GrVertexLayout vertexLayout,
                   int texCoordOffsetsByStage[kNumStages],
                   int* colorOffset,
                   int* coverageOffset,
                   int* edgeOffset);

    // determine if src alpha is guaranteed to be one for all src pixels
    bool srcAlphaWillBeOne(GrVertexLayout vertexLayout) const;

    /**
     * Accessing positions, texture coords, or colors, of a vertex within an
     * array is a hassle involving casts and simple math. These helpers exist
     * to keep GrDrawTarget clients' code a bit nicer looking.
     */

    /**
     * Gets a pointer to a GrPoint of a vertex's position or texture
     * coordinate.
     * @param vertices      the vetex array
     * @param vertexIndex   the index of the vertex in the array
     * @param vertexSize    the size of each vertex in the array
     * @param offset        the offset in bytes of the vertex component.
     *                      Defaults to zero (corresponding to vertex position)
     * @return pointer to the vertex component as a GrPoint
     */
    static GrPoint* GetVertexPoint(void* vertices,
                                   int vertexIndex,
                                   int vertexSize,
                                   int offset = 0) {
        intptr_t start = GrTCast<intptr_t>(vertices);
        return GrTCast<GrPoint*>(start + offset +
                                 vertexIndex * vertexSize);
    }
    static const GrPoint* GetVertexPoint(const void* vertices,
                                         int vertexIndex,
                                         int vertexSize,
                                         int offset = 0) {
        intptr_t start = GrTCast<intptr_t>(vertices);
        return GrTCast<const GrPoint*>(start + offset +
                                       vertexIndex * vertexSize);
    }

    /**
     * Gets a pointer to a GrColor inside a vertex within a vertex array.
     * @param vertices      the vetex array
     * @param vertexIndex   the index of the vertex in the array
     * @param vertexSize    the size of each vertex in the array
     * @param offset        the offset in bytes of the vertex color
     * @return pointer to the vertex component as a GrColor
     */
    static GrColor* GetVertexColor(void* vertices,
                                   int vertexIndex,
                                   int vertexSize,
                                   int offset) {
        intptr_t start = GrTCast<intptr_t>(vertices);
        return GrTCast<GrColor*>(start + offset +
                                 vertexIndex * vertexSize);
    }
    static const GrColor* GetVertexColor(const void* vertices,
                                         int vertexIndex,
                                         int vertexSize,
                                         int offset) {
        const intptr_t start = GrTCast<intptr_t>(vertices);
        return GrTCast<const GrColor*>(start + offset +
                                       vertexIndex * vertexSize);
    }

    static void VertexLayoutUnitTest();

    /// @}

    ///////////////////////////////////////////////////////////////////////////
    /// @name Color
    ////

    /**
     *  Sets color for next draw to a premultiplied-alpha color.
     *
     *  @param color    the color to set.
     */
    void setColor(GrColor color) { fCommon.fColor = color; }

    GrColor getColor() const { return fCommon.fColor; }

    /**
     *  Sets the color to be used for the next draw to be
     *  (r,g,b,a) = (alpha, alpha, alpha, alpha).
     *
     *  @param alpha The alpha value to set as the color.
     */
    void setAlpha(uint8_t a) {
        this->setColor((a << 24) | (a << 16) | (a << 8) | a);
    }

    /**
     * Add a color filter that can be represented by a color and a mode. Applied
     * after color-computing texture stages.
     */
    void setColorFilter(GrColor c, SkXfermode::Mode mode) {
        fCommon.fColorFilterColor = c;
        fCommon.fColorFilterMode = mode;
    }

    GrColor getColorFilterColor() const { return fCommon.fColorFilterColor; }
    SkXfermode::Mode getColorFilterMode() const { return fCommon.fColorFilterMode; }

    /**
     * Constructor sets the color to be 'color' which is undone by the destructor.
     */
    class AutoColorRestore : public ::GrNoncopyable {
    public:
        AutoColorRestore(GrDrawState* drawState, GrColor color) {
            fDrawState = drawState;
            fOldColor = fDrawState->getColor();
            fDrawState->setColor(color);
        }
        ~AutoColorRestore() {
            fDrawState->setColor(fOldColor);
        }
    private:
        GrDrawState*    fDrawState;
        GrColor         fOldColor;
    };

    /// @}

    ///////////////////////////////////////////////////////////////////////////
    /// @name Coverage
    ////

    /**
     * Sets a constant fractional coverage to be applied to the draw. The
     * initial value (after construction or reset()) is 0xff. The constant
     * coverage is ignored when per-vertex coverage is provided.
     */
    void setCoverage(uint8_t coverage) {
        fCommon.fCoverage = GrColorPackRGBA(coverage, coverage, coverage, coverage);
    }

    /**
     * Version of above that specifies 4 channel per-vertex color. The value
     * should be premultiplied.
     */
    void setCoverage4(GrColor coverage) {
        fCommon.fCoverage = coverage;
    }

    GrColor getCoverage() const {
        return fCommon.fCoverage;
    }

    /// @}

    ///////////////////////////////////////////////////////////////////////////
    /// @name Effect Stages
    ////

    const GrEffectRef* setEffect(int stageIdx, const GrEffectRef* effect) {
        fStages[stageIdx].setEffect(effect);
        return effect;
    }

    /**
     * Creates a GrSimpleTextureEffect.
     */
    void createTextureEffect(int stageIdx, GrTexture* texture, const SkMatrix& matrix) {
        GrAssert(!this->getStage(stageIdx).getEffect());
        GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix);
        this->setEffect(stageIdx, effect)->unref();
    }
    void createTextureEffect(int stageIdx,
                             GrTexture* texture,
                             const SkMatrix& matrix,
                             const GrTextureParams& params) {
        GrAssert(!this->getStage(stageIdx).getEffect());
        GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix, params);
        this->setEffect(stageIdx, effect)->unref();
    }

    bool stagesDisabled() {
        for (int i = 0; i < kNumStages; ++i) {
            if (NULL != fStages[i].getEffect()) {
                return false;
            }
        }
        return true;
    }

    void disableStage(int stageIdx) { this->setEffect(stageIdx, NULL); }

    /**
     * Release all the GrEffects referred to by this draw state.
     */
    void disableStages() {
        for (int i = 0; i < kNumStages; ++i) {
            this->disableStage(i);
        }
    }

    class AutoStageDisable : public ::GrNoncopyable {
    public:
        AutoStageDisable(GrDrawState* ds) : fDrawState(ds) {}
        ~AutoStageDisable() {
            if (NULL != fDrawState) {
                fDrawState->disableStages();
            }
        }
    private:
        GrDrawState* fDrawState;
    };

    /**
     * Returns the current stage by index.
     */
    const GrEffectStage& getStage(int stageIdx) const {
        GrAssert((unsigned)stageIdx < kNumStages);
        return fStages[stageIdx];
    }

    /**
     * Called when the source coord system is changing. preConcat gives the transformation from the
     * old coord system to the new coord system.
     */
    void preConcatStageMatrices(const SkMatrix& preConcat) {
        this->preConcatStageMatrices(~0U, preConcat);
    }
    /**
     * Version of above that applies the update matrix selectively to stages via a mask.
     */
    void preConcatStageMatrices(uint32_t stageMask, const SkMatrix& preConcat) {
        for (int i = 0; i < kNumStages; ++i) {
            if (((1 << i) & stageMask) && this->isStageEnabled(i)) {
                fStages[i].preConcatCoordChange(preConcat);
            }
        }
    }

    /**
     * Called when the source coord system is changing. preConcatInverse is the inverse of the
     * transformation from the old coord system to the new coord system. Returns false if the matrix
     * cannot be inverted.
     */
    bool preConcatStageMatricesWithInverse(const SkMatrix& preConcatInverse) {
        SkMatrix inv;
        bool computed = false;
        for (int i = 0; i < kNumStages; ++i) {
            if (this->isStageEnabled(i)) {
                if (!computed && !preConcatInverse.invert(&inv)) {
                    return false;
                } else {
                    computed = true;
                }
                fStages[i].preConcatCoordChange(preConcatInverse);
            }
        }
        return true;
    }

    /// @}

    ///////////////////////////////////////////////////////////////////////////
    /// @name Coverage / Color Stages
    ////

    /**
     * A common pattern is to compute a color with the initial stages and then
     * modulate that color by a coverage value in later stage(s) (AA, mask-
     * filters, glyph mask, etc). Color-filters, xfermodes, etc should be
     * computed based on the pre-coverage-modulated color. The division of
     * stages between color-computing and coverage-computing is specified by
     * this method. Initially this is kNumStages (all stages
     * are color-computing).
     */
    void setFirstCoverageStage(int firstCoverageStage) {
        GrAssert((unsigned)firstCoverageStage <= kNumStages);
        fCommon.fFirstCoverageStage = firstCoverageStage;
    }

    /**
     * Gets the index of the first coverage-computing stage.
     */
    int getFirstCoverageStage() const {
        return fCommon.fFirstCoverageStage;
    }

    ///@}

    ///////////////////////////////////////////////////////////////////////////
    /// @name Blending
    ////

    /**
     * Sets the blending function coefficients.
     *
     * The blend function will be:
     *    D' = sat(S*srcCoef + D*dstCoef)
     *
     *   where D is the existing destination color, S is the incoming source
     *   color, and D' is the new destination color that will be written. sat()
     *   is the saturation function.
     *
     * @param srcCoef coefficient applied to the src color.
     * @param dstCoef coefficient applied to the dst color.
     */
    void setBlendFunc(GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff) {
        fCommon.fSrcBlend = srcCoeff;
        fCommon.fDstBlend = dstCoeff;
    #if GR_DEBUG
        switch (dstCoeff) {
        case kDC_GrBlendCoeff:
        case kIDC_GrBlendCoeff:
        case kDA_GrBlendCoeff:
        case kIDA_GrBlendCoeff:
            GrPrintf("Unexpected dst blend coeff. Won't work correctly with"
                     "coverage stages.\n");
            break;
        default:
            break;
        }
        switch (srcCoeff) {
        case kSC_GrBlendCoeff:
        case kISC_GrBlendCoeff:
        case kSA_GrBlendCoeff:
        case kISA_GrBlendCoeff:
            GrPrintf("Unexpected src blend coeff. Won't work correctly with"
                     "coverage stages.\n");
            break;
        default:
            break;
        }
    #endif
    }

    GrBlendCoeff getSrcBlendCoeff() const { return fCommon.fSrcBlend; }
    GrBlendCoeff getDstBlendCoeff() const { return fCommon.fDstBlend; }

    void getDstBlendCoeff(GrBlendCoeff* srcBlendCoeff,
                          GrBlendCoeff* dstBlendCoeff) const {
        *srcBlendCoeff = fCommon.fSrcBlend;
        *dstBlendCoeff = fCommon.fDstBlend;
    }

    /**
     * Sets the blending function constant referenced by the following blending
     * coefficients:
     *      kConstC_GrBlendCoeff
     *      kIConstC_GrBlendCoeff
     *      kConstA_GrBlendCoeff
     *      kIConstA_GrBlendCoeff
     *
     * @param constant the constant to set
     */
    void setBlendConstant(GrColor constant) { fCommon.fBlendConstant = constant; }

    /**
     * Retrieves the last value set by setBlendConstant()
     * @return the blending constant value
     */
    GrColor getBlendConstant() const { return fCommon.fBlendConstant; }

    /// @}

    ///////////////////////////////////////////////////////////////////////////
    /// @name View Matrix
    ////

    /**
     * Sets the matrix applied to vertex positions.
     *
     * In the post-view-matrix space the rectangle [0,w]x[0,h]
     * fully covers the render target. (w and h are the width and height of the
     * the render-target.)
     */
    void setViewMatrix(const SkMatrix& m) { fCommon.fViewMatrix = m; }

    /**
     * Gets a writable pointer to the view matrix.
     */
    SkMatrix* viewMatrix() { return &fCommon.fViewMatrix; }

    /**
     *  Multiplies the current view matrix by a matrix
     *
     *  After this call V' = V*m where V is the old view matrix,
     *  m is the parameter to this function, and V' is the new view matrix.
     *  (We consider positions to be column vectors so position vector p is
     *  transformed by matrix X as p' = X*p.)
     *
     *  @param m the matrix used to modify the view matrix.
     */
    void preConcatViewMatrix(const SkMatrix& m) { fCommon.fViewMatrix.preConcat(m); }

    /**
     *  Multiplies the current view matrix by a matrix
     *
     *  After this call V' = m*V where V is the old view matrix,
     *  m is the parameter to this function, and V' is the new view matrix.
     *  (We consider positions to be column vectors so position vector p is
     *  transformed by matrix X as p' = X*p.)
     *
     *  @param m the matrix used to modify the view matrix.
     */
    void postConcatViewMatrix(const SkMatrix& m) { fCommon.fViewMatrix.postConcat(m); }

    /**
     * Retrieves the current view matrix
     * @return the current view matrix.
     */
    const SkMatrix& getViewMatrix() const { return fCommon.fViewMatrix; }

    /**
     *  Retrieves the inverse of the current view matrix.
     *
     *  If the current view matrix is invertible, return true, and if matrix
     *  is non-null, copy the inverse into it. If the current view matrix is
     *  non-invertible, return false and ignore the matrix parameter.
     *
     * @param matrix if not null, will receive a copy of the current inverse.
     */
    bool getViewInverse(SkMatrix* matrix) const {
        // TODO: determine whether we really need to leave matrix unmodified
        // at call sites when inversion fails.
        SkMatrix inverse;
        if (fCommon.fViewMatrix.invert(&inverse)) {
            if (matrix) {
                *matrix = inverse;
            }
            return true;
        }
        return false;
    }

    ////////////////////////////////////////////////////////////////////////////

    /**
     * Preconcats the current view matrix and restores the previous view matrix in the destructor.
     * Effect matrices are automatically adjusted to compensate.
     */
    class AutoViewMatrixRestore : public ::GrNoncopyable {
    public:
        AutoViewMatrixRestore() : fDrawState(NULL) {}

        AutoViewMatrixRestore(GrDrawState* ds,
                              const SkMatrix& preconcatMatrix,
                              uint32_t explicitCoordStageMask = 0) {
            fDrawState = NULL;
            this->set(ds, preconcatMatrix, explicitCoordStageMask);
        }

        ~AutoViewMatrixRestore() { this->restore(); }

        /**
         * Can be called prior to destructor to restore the original matrix.
         */
        void restore();

        void set(GrDrawState* drawState,
                 const SkMatrix& preconcatMatrix,
                 uint32_t explicitCoordStageMask = 0);

        bool isSet() const { return NULL != fDrawState; }

    private:
        GrDrawState*                        fDrawState;
        SkMatrix                            fViewMatrix;
        GrEffectStage::SavedCoordChange     fSavedCoordChanges[GrDrawState::kNumStages];
        uint32_t                            fRestoreMask;
    };

    ////////////////////////////////////////////////////////////////////////////

    /**
     * This sets the view matrix to identity and adjusts stage matrices to compensate. The
     * destructor undoes the changes, restoring the view matrix that was set before the
     * constructor. It is similar to passing the inverse of the current view matrix to
     * AutoViewMatrixRestore, but lazily computes the inverse only if necessary.
     */
    class AutoDeviceCoordDraw : ::GrNoncopyable {
    public:
        AutoDeviceCoordDraw() : fDrawState(NULL) {}
        /**
         * If a stage's texture matrix is applied to explicit per-vertex coords, rather than to
         * positions, then we don't want to modify its matrix. The explicitCoordStageMask is used
         * to specify such stages.
         */
        AutoDeviceCoordDraw(GrDrawState* drawState,
                            uint32_t explicitCoordStageMask = 0) {
            fDrawState = NULL;
            this->set(drawState, explicitCoordStageMask);
        }

        ~AutoDeviceCoordDraw() { this->restore(); }

        bool set(GrDrawState* drawState, uint32_t explicitCoordStageMask = 0);

        /**
         * Returns true if this object was successfully initialized on to a GrDrawState. It may
         * return false because a non-default constructor or set() were never called or because
         * the view matrix was not invertible.
         */
        bool succeeded() const { return NULL != fDrawState; }

        /**
         * Returns the matrix that was set previously set on the drawState. This is only valid
         * if succeeded returns true.
         */
        const SkMatrix& getOriginalMatrix() const {
            GrAssert(this->succeeded());
            return fViewMatrix;
        }

        /**
         * Can be called prior to destructor to restore the original matrix.
         */
        void restore();

    private:
        GrDrawState*                        fDrawState;
        SkMatrix                            fViewMatrix;
        GrEffectStage::SavedCoordChange     fSavedCoordChanges[GrDrawState::kNumStages];
        uint32_t                            fRestoreMask;
    };

    /// @}

    ///////////////////////////////////////////////////////////////////////////
    /// @name Render Target
    ////

    /**
     * Sets the render-target used at the next drawing call
     *
     * @param target  The render target to set.
     */
    void setRenderTarget(GrRenderTarget* target) {
        fRenderTarget.reset(SkSafeRef(target));
    }

    /**
     * Retrieves the currently set render-target.
     *
     * @return    The currently set render target.
     */
    const GrRenderTarget* getRenderTarget() const { return fRenderTarget.get(); }
    GrRenderTarget* getRenderTarget() { return fRenderTarget.get(); }

    class AutoRenderTargetRestore : public ::GrNoncopyable {
    public:
        AutoRenderTargetRestore() : fDrawState(NULL), fSavedTarget(NULL) {}
        AutoRenderTargetRestore(GrDrawState* ds, GrRenderTarget* newTarget) {
            fDrawState = NULL;
            fSavedTarget = NULL;
            this->set(ds, newTarget);
        }
        ~AutoRenderTargetRestore() { this->restore(); }

        void restore() {
            if (NULL != fDrawState) {
                fDrawState->setRenderTarget(fSavedTarget);
                fDrawState = NULL;
            }
            GrSafeSetNull(fSavedTarget);
        }

        void set(GrDrawState* ds, GrRenderTarget* newTarget) {
            this->restore();

            if (NULL != ds) {
                GrAssert(NULL == fSavedTarget);
                fSavedTarget = ds->getRenderTarget();
                SkSafeRef(fSavedTarget);
                ds->setRenderTarget(newTarget);
                fDrawState = ds;
            }
        }
    private:
        GrDrawState* fDrawState;
        GrRenderTarget* fSavedTarget;
    };

    /// @}

    ///////////////////////////////////////////////////////////////////////////
    /// @name Stencil
    ////

    /**
     * Sets the stencil settings to use for the next draw.
     * Changing the clip has the side-effect of possibly zeroing
     * out the client settable stencil bits. So multipass algorithms
     * using stencil should not change the clip between passes.
     * @param settings  the stencil settings to use.
     */
    void setStencil(const GrStencilSettings& settings) {
        fCommon.fStencilSettings = settings;
    }

    /**
     * Shortcut to disable stencil testing and ops.
     */
    void disableStencil() {
        fCommon.fStencilSettings.setDisabled();
    }

    const GrStencilSettings& getStencil() const { return fCommon.fStencilSettings; }

    GrStencilSettings* stencil() { return &fCommon.fStencilSettings; }

    /// @}

    ///////////////////////////////////////////////////////////////////////////
    // @name Edge AA
    // Edge equations can be specified to perform anti-aliasing. Because the
    // edges are specified as per-vertex data, vertices that are shared by
    // multiple edges must be split.
    //
    ////

    /**
     * When specifying edges as vertex data this enum specifies what type of
     * edges are in use. The edges are always 4 SkScalars in memory, even when
     * the edge type requires fewer than 4.
     *
     * TODO: Fix the fact that HairLine and Circle edge types use y-down coords.
     *       (either adjust in VS or use origin_upper_left in GLSL)
     */
    enum VertexEdgeType {
        /* 1-pixel wide line
           2D implicit line eq (a*x + b*y +c = 0). 4th component unused */
        kHairLine_EdgeType,
        /* Quadratic specified by u^2-v canonical coords (only 2
           components used). Coverage based on signed distance with negative
           being inside, positive outside. Edge specified in window space
           (y-down) */
        kQuad_EdgeType,
        /* Same as above but for hairline quadratics. Uses unsigned distance.
           Coverage is min(0, 1-distance). */
        kHairQuad_EdgeType,
        /* Circle specified as center_x, center_y, outer_radius, inner_radius
           all in window space (y-down). */
        kCircle_EdgeType,
        /* Axis-aligned ellipse specified as center_x, center_y, x_radius, x_radius/y_radius
           all in window space (y-down). */
        kEllipse_EdgeType,

        kVertexEdgeTypeCnt
    };

    /**
     * Determines the interpretation per-vertex edge data when the
     * kEdge_VertexLayoutBit is set (see GrDrawTarget). When per-vertex edges
     * are not specified the value of this setting has no effect.
     */
    void setVertexEdgeType(VertexEdgeType type) {
        GrAssert(type >=0 && type < kVertexEdgeTypeCnt);
        fCommon.fVertexEdgeType = type;
    }

    VertexEdgeType getVertexEdgeType() const { return fCommon.fVertexEdgeType; }

    /// @}

    ///////////////////////////////////////////////////////////////////////////
    /// @name State Flags
    ////

    /**
     *  Flags that affect rendering. Controlled using enable/disableState(). All
     *  default to disabled.
     */
    enum StateBits {
        /**
         * Perform dithering. TODO: Re-evaluate whether we need this bit
         */
        kDither_StateBit        = 0x01,
        /**
         * Perform HW anti-aliasing. This means either HW FSAA, if supported by the render target,
         * or smooth-line rendering if a line primitive is drawn and line smoothing is supported by
         * the 3D API.
         */
        kHWAntialias_StateBit   = 0x02,
        /**
         * Draws will respect the clip, otherwise the clip is ignored.
         */
        kClip_StateBit          = 0x04,
        /**
         * Disables writing to the color buffer. Useful when performing stencil
         * operations.
         */
        kNoColorWrites_StateBit = 0x08,

        /**
         * Usually coverage is applied after color blending. The color is blended using the coeffs
         * specified by setBlendFunc(). The blended color is then combined with dst using coeffs
         * of src_coverage, 1-src_coverage. Sometimes we are explicitly drawing a coverage mask. In
         * this case there is no distinction between coverage and color and the caller needs direct
         * control over the blend coeffs. When set, there will be a single blend step controlled by
         * setBlendFunc() which will use coverage*color as the src color.
         */
         kCoverageDrawing_StateBit = 0x10,

        // Users of the class may add additional bits to the vector
        kDummyStateBit,
        kLastPublicStateBit = kDummyStateBit-1,
    };

    void resetStateFlags() {
        fCommon.fFlagBits = 0;
    }

    /**
     * Enable render state settings.
     *
     * @param stateBits bitfield of StateBits specifying the states to enable
     */
    void enableState(uint32_t stateBits) {
        fCommon.fFlagBits |= stateBits;
    }

    /**
     * Disable render state settings.
     *
     * @param stateBits bitfield of StateBits specifying the states to disable
     */
    void disableState(uint32_t stateBits) {
        fCommon.fFlagBits &= ~(stateBits);
    }

    /**
     * Enable or disable stateBits based on a boolean.
     *
     * @param stateBits bitfield of StateBits to enable or disable
     * @param enable    if true enable stateBits, otherwise disable
     */
    void setState(uint32_t stateBits, bool enable) {
        if (enable) {
            this->enableState(stateBits);
        } else {
            this->disableState(stateBits);
        }
    }

    bool isDitherState() const {
        return 0 != (fCommon.fFlagBits & kDither_StateBit);
    }

    bool isHWAntialiasState() const {
        return 0 != (fCommon.fFlagBits & kHWAntialias_StateBit);
    }

    bool isClipState() const {
        return 0 != (fCommon.fFlagBits & kClip_StateBit);
    }

    bool isColorWriteDisabled() const {
        return 0 != (fCommon.fFlagBits & kNoColorWrites_StateBit);
    }

    bool isCoverageDrawing() const {
        return 0 != (fCommon.fFlagBits & kCoverageDrawing_StateBit);
    }

    bool isStateFlagEnabled(uint32_t stateBit) const {
        return 0 != (stateBit & fCommon.fFlagBits);
    }

    /// @}

    ///////////////////////////////////////////////////////////////////////////
    /// @name Face Culling
    ////

    enum DrawFace {
        kInvalid_DrawFace = -1,

        kBoth_DrawFace,
        kCCW_DrawFace,
        kCW_DrawFace,
    };

    /**
     * Controls whether clockwise, counterclockwise, or both faces are drawn.
     * @param face  the face(s) to draw.
     */
    void setDrawFace(DrawFace face) {
        GrAssert(kInvalid_DrawFace != face);
        fCommon.fDrawFace = face;
    }

    /**
     * Gets whether the target is drawing clockwise, counterclockwise,
     * or both faces.
     * @return the current draw face(s).
     */
    DrawFace getDrawFace() const { return fCommon.fDrawFace; }

    /// @}

    ///////////////////////////////////////////////////////////////////////////

    bool isStageEnabled(int s) const {
        GrAssert((unsigned)s < kNumStages);
        return (NULL != fStages[s].getEffect());
    }

    // Most stages are usually not used, so conditionals here
    // reduce the expected number of bytes touched by 50%.
    bool operator ==(const GrDrawState& s) const {
        if (fRenderTarget.get() != s.fRenderTarget.get() || fCommon != s.fCommon) {
            return false;
        }

        for (int i = 0; i < kNumStages; i++) {
            bool enabled = this->isStageEnabled(i);
            if (enabled != s.isStageEnabled(i)) {
                return false;
            }
            if (enabled && this->fStages[i] != s.fStages[i]) {
                return false;
            }
        }
        return true;
    }
    bool operator !=(const GrDrawState& s) const { return !(*this == s); }

    GrDrawState& operator= (const GrDrawState& s) {
        this->setRenderTarget(s.fRenderTarget.get());
        fCommon = s.fCommon;
        for (int i = 0; i < kNumStages; i++) {
            if (s.isStageEnabled(i)) {
                this->fStages[i] = s.fStages[i];
            }
        }
        return *this;
    }

private:

    /** Fields that are identical in GrDrawState and GrDrawState::DeferredState. */
    struct CommonState {
        // These fields are roughly sorted by decreasing likelihood of being different in op==
        GrColor                         fColor;
        SkMatrix                        fViewMatrix;
        GrBlendCoeff                    fSrcBlend;
        GrBlendCoeff                    fDstBlend;
        GrColor                         fBlendConstant;
        uint32_t                        fFlagBits;
        VertexEdgeType                  fVertexEdgeType;
        GrStencilSettings               fStencilSettings;
        int                             fFirstCoverageStage;
        GrColor                         fCoverage;
        SkXfermode::Mode                fColorFilterMode;
        GrColor                         fColorFilterColor;
        DrawFace                        fDrawFace;
        bool operator== (const CommonState& other) const {
            return fColor == other.fColor &&
                   fViewMatrix.cheapEqualTo(other.fViewMatrix) &&
                   fSrcBlend == other.fSrcBlend &&
                   fDstBlend == other.fDstBlend &&
                   fBlendConstant == other.fBlendConstant &&
                   fFlagBits == other.fFlagBits &&
                   fVertexEdgeType == other.fVertexEdgeType &&
                   fStencilSettings == other.fStencilSettings &&
                   fFirstCoverageStage == other.fFirstCoverageStage &&
                   fCoverage == other.fCoverage &&
                   fColorFilterMode == other.fColorFilterMode &&
                   fColorFilterColor == other.fColorFilterColor &&
                   fDrawFace == other.fDrawFace;
        }
        bool operator!= (const CommonState& other) const { return !(*this == other); }
    };

    /** GrDrawState uses GrEffectStages to hold stage state which holds a ref on GrEffectRef.
        DeferredState must directly reference GrEffects, however. */
    struct SavedEffectStage {
        SavedEffectStage() : fEffect(NULL) {}
        const GrEffect*                    fEffect;
        GrEffectStage::SavedCoordChange    fCoordChange;
    };

public:
    /**
     * DeferredState contains all of the data of a GrDrawState but does not hold refs on GrResource
     * objects. Resources are allowed to hit zero ref count while in DeferredStates. Their internal
     * dispose mechanism returns them to the cache. This allows recycling resources through the
     * the cache while they are in a deferred draw queue.
     */
    class DeferredState {
    public:
        DeferredState() : fRenderTarget(NULL) {
            GR_DEBUGCODE(fInitialized = false;)
        }
        // TODO: Remove this when DeferredState no longer holds a ref to the RT
        ~DeferredState() { SkSafeUnref(fRenderTarget); }

        void saveFrom(const GrDrawState& drawState) {
            fCommon = drawState.fCommon;
            // TODO: Here we will copy the GrRenderTarget pointer without taking a ref.
            fRenderTarget = drawState.fRenderTarget.get();
            SkSafeRef(fRenderTarget);
            // Here we ref the effects directly rather than the effect-refs. TODO: When the effect-
            // ref gets fully unref'ed it will cause the underlying effect to unref its resources
            // and recycle them to the cache (if no one else is holding a ref to the resources).
            for (int i = 0; i < kNumStages; ++i) {
                fStages[i].saveFrom(drawState.fStages[i]);
            }
            GR_DEBUGCODE(fInitialized = true;)
        }

        void restoreTo(GrDrawState* drawState) {
            GrAssert(fInitialized);
            drawState->fCommon = fCommon;
            drawState->setRenderTarget(fRenderTarget);
            for (int i = 0; i < kNumStages; ++i) {
                fStages[i].restoreTo(&drawState->fStages[i]);
            }
        }

        bool isEqual(const GrDrawState& state) const {
            if (fRenderTarget != state.fRenderTarget.get() || fCommon != state.fCommon) {
                return false;
            }
            for (int i = 0; i < kNumStages; ++i) {
                if (!fStages[i].isEqual(state.fStages[i])) {
                    return false;
                }
            }
            return true;
        }

    private:
        GrRenderTarget*                 fRenderTarget;
        CommonState                     fCommon;
        GrEffectStage::DeferredStage    fStages[kNumStages];

        GR_DEBUGCODE(bool fInitialized;)
    };

private:
    SkAutoTUnref<GrRenderTarget>    fRenderTarget;
    CommonState                     fCommon;
    GrEffectStage                   fStages[kNumStages];

    typedef GrRefCnt INHERITED;
};

#endif