1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrDrawState.h"
#include "GrPaint.h"
bool GrDrawState::setIdentityViewMatrix() {
if (fColorStages.count() || fCoverageStages.count()) {
SkMatrix invVM;
if (!fCommon.fViewMatrix.invert(&invVM)) {
// sad trombone sound
return false;
}
for (int s = 0; s < fColorStages.count(); ++s) {
fColorStages[s].localCoordChange(invVM);
}
for (int s = 0; s < fCoverageStages.count(); ++s) {
fCoverageStages[s].localCoordChange(invVM);
}
}
fCommon.fViewMatrix.reset();
return true;
}
void GrDrawState::setFromPaint(const GrPaint& paint, const SkMatrix& vm, GrRenderTarget* rt) {
SkASSERT(0 == fBlockEffectRemovalCnt || 0 == this->numTotalStages());
fColorStages.reset();
fCoverageStages.reset();
for (int i = 0; i < paint.numColorStages(); ++i) {
fColorStages.push_back(paint.getColorStage(i));
}
for (int i = 0; i < paint.numCoverageStages(); ++i) {
fCoverageStages.push_back(paint.getCoverageStage(i));
}
this->setRenderTarget(rt);
fCommon.fViewMatrix = vm;
// These have no equivalent in GrPaint, set them to defaults
fCommon.fBlendConstant = 0x0;
fCommon.fDrawFace = kBoth_DrawFace;
fCommon.fStencilSettings.setDisabled();
this->resetStateFlags();
// Enable the clip bit
this->enableState(GrDrawState::kClip_StateBit);
this->setColor(paint.getColor());
this->setCoverage4(paint.getCoverage());
this->setState(GrDrawState::kDither_StateBit, paint.isDither());
this->setState(GrDrawState::kHWAntialias_StateBit, paint.isAntiAlias());
this->setBlendFunc(paint.getSrcBlendCoeff(), paint.getDstBlendCoeff());
this->setColorFilter(paint.getColorFilterColor(), paint.getColorFilterMode());
this->setCoverage(paint.getCoverage());
}
////////////////////////////////////////////////////////////////////////////////
static size_t vertex_size(const GrVertexAttrib* attribs, int count) {
// this works as long as we're 4 byte-aligned
#ifdef SK_DEBUG
uint32_t overlapCheck = 0;
#endif
SkASSERT(count <= GrDrawState::kMaxVertexAttribCnt);
size_t size = 0;
for (int index = 0; index < count; ++index) {
size_t attribSize = GrVertexAttribTypeSize(attribs[index].fType);
size += attribSize;
#ifdef SK_DEBUG
size_t dwordCount = attribSize >> 2;
uint32_t mask = (1 << dwordCount)-1;
size_t offsetShift = attribs[index].fOffset >> 2;
SkASSERT(!(overlapCheck & (mask << offsetShift)));
overlapCheck |= (mask << offsetShift);
#endif
}
return size;
}
size_t GrDrawState::getVertexSize() const {
return vertex_size(fCommon.fVAPtr, fCommon.fVACount);
}
////////////////////////////////////////////////////////////////////////////////
void GrDrawState::setVertexAttribs(const GrVertexAttrib* attribs, int count) {
SkASSERT(count <= kMaxVertexAttribCnt);
fCommon.fVAPtr = attribs;
fCommon.fVACount = count;
// Set all the indices to -1
memset(fCommon.fFixedFunctionVertexAttribIndices,
0xff,
sizeof(fCommon.fFixedFunctionVertexAttribIndices));
#ifdef SK_DEBUG
uint32_t overlapCheck = 0;
#endif
for (int i = 0; i < count; ++i) {
if (attribs[i].fBinding < kGrFixedFunctionVertexAttribBindingCnt) {
// The fixed function attribs can only be specified once
SkASSERT(-1 == fCommon.fFixedFunctionVertexAttribIndices[attribs[i].fBinding]);
SkASSERT(GrFixedFunctionVertexAttribVectorCount(attribs[i].fBinding) ==
GrVertexAttribTypeVectorCount(attribs[i].fType));
fCommon.fFixedFunctionVertexAttribIndices[attribs[i].fBinding] = i;
}
#ifdef SK_DEBUG
size_t dwordCount = GrVertexAttribTypeSize(attribs[i].fType) >> 2;
uint32_t mask = (1 << dwordCount)-1;
size_t offsetShift = attribs[i].fOffset >> 2;
SkASSERT(!(overlapCheck & (mask << offsetShift)));
overlapCheck |= (mask << offsetShift);
#endif
}
// Positions must be specified.
SkASSERT(-1 != fCommon.fFixedFunctionVertexAttribIndices[kPosition_GrVertexAttribBinding]);
}
////////////////////////////////////////////////////////////////////////////////
void GrDrawState::setDefaultVertexAttribs() {
static const GrVertexAttrib kPositionAttrib =
{kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding};
fCommon.fVAPtr = &kPositionAttrib;
fCommon.fVACount = 1;
// set all the fixed function indices to -1 except position.
memset(fCommon.fFixedFunctionVertexAttribIndices,
0xff,
sizeof(fCommon.fFixedFunctionVertexAttribIndices));
fCommon.fFixedFunctionVertexAttribIndices[kPosition_GrVertexAttribBinding] = 0;
}
////////////////////////////////////////////////////////////////////////////////
bool GrDrawState::validateVertexAttribs() const {
// check consistency of effects and attributes
GrSLType slTypes[kMaxVertexAttribCnt];
for (int i = 0; i < kMaxVertexAttribCnt; ++i) {
slTypes[i] = static_cast<GrSLType>(-1);
}
int totalStages = fColorStages.count() + fCoverageStages.count();
for (int s = 0; s < totalStages; ++s) {
int covIdx = s - fColorStages.count();
const GrEffectStage& stage = covIdx < 0 ? fColorStages[s] : fCoverageStages[covIdx];
const GrEffectRef* effect = stage.getEffect();
SkASSERT(NULL != effect);
// make sure that any attribute indices have the correct binding type, that the attrib
// type and effect's shader lang type are compatible, and that attributes shared by
// multiple effects use the same shader lang type.
const int* attributeIndices = stage.getVertexAttribIndices();
int numAttributes = stage.getVertexAttribIndexCount();
for (int i = 0; i < numAttributes; ++i) {
int attribIndex = attributeIndices[i];
if (attribIndex >= fCommon.fVACount ||
kEffect_GrVertexAttribBinding != fCommon.fVAPtr[attribIndex].fBinding) {
return false;
}
GrSLType effectSLType = (*effect)->vertexAttribType(i);
GrVertexAttribType attribType = fCommon.fVAPtr[attribIndex].fType;
int slVecCount = GrSLTypeVectorCount(effectSLType);
int attribVecCount = GrVertexAttribTypeVectorCount(attribType);
if (slVecCount != attribVecCount ||
(static_cast<GrSLType>(-1) != slTypes[attribIndex] &&
slTypes[attribIndex] != effectSLType)) {
return false;
}
slTypes[attribIndex] = effectSLType;
}
}
return true;
}
bool GrDrawState::willEffectReadDstColor() const {
if (!this->isColorWriteDisabled()) {
for (int s = 0; s < fColorStages.count(); ++s) {
if ((*fColorStages[s].getEffect())->willReadDstColor()) {
return true;
}
}
}
for (int s = 0; s < fCoverageStages.count(); ++s) {
if ((*fCoverageStages[s].getEffect())->willReadDstColor()) {
return true;
}
}
return false;
}
////////////////////////////////////////////////////////////////////////////////
bool GrDrawState::srcAlphaWillBeOne() const {
uint32_t validComponentFlags;
GrColor color;
// Check if per-vertex or constant color may have partial alpha
if (this->hasColorVertexAttribute()) {
validComponentFlags = 0;
color = 0; // not strictly necessary but we get false alarms from tools about uninit.
} else {
validComponentFlags = kRGBA_GrColorComponentFlags;
color = this->getColor();
}
// Run through the color stages
for (int s = 0; s < fColorStages.count(); ++s) {
const GrEffectRef* effect = fColorStages[s].getEffect();
(*effect)->getConstantColorComponents(&color, &validComponentFlags);
}
// Check if the color filter could introduce an alpha.
// We could skip the above work when this is true, but it is rare and the right fix is to make
// the color filter a GrEffect and implement getConstantColorComponents() for it.
if (SkXfermode::kDst_Mode != this->getColorFilterMode()) {
validComponentFlags = 0;
}
// Check whether coverage is treated as color. If so we run through the coverage computation.
if (this->isCoverageDrawing()) {
GrColor coverageColor = this->getCoverage();
GrColor oldColor = color;
color = 0;
for (int c = 0; c < 4; ++c) {
if (validComponentFlags & (1 << c)) {
U8CPU a = (oldColor >> (c * 8)) & 0xff;
U8CPU b = (coverageColor >> (c * 8)) & 0xff;
color |= (SkMulDiv255Round(a, b) << (c * 8));
}
}
for (int s = 0; s < fCoverageStages.count(); ++s) {
const GrEffectRef* effect = fCoverageStages[s].getEffect();
(*effect)->getConstantColorComponents(&color, &validComponentFlags);
}
}
return (kA_GrColorComponentFlag & validComponentFlags) && 0xff == GrColorUnpackA(color);
}
bool GrDrawState::hasSolidCoverage() const {
// If we're drawing coverage directly then coverage is effectively treated as color.
if (this->isCoverageDrawing()) {
return true;
}
GrColor coverage;
uint32_t validComponentFlags;
// Initialize to an unknown starting coverage if per-vertex coverage is specified.
if (this->hasCoverageVertexAttribute()) {
validComponentFlags = 0;
} else {
coverage = fCommon.fCoverage;
validComponentFlags = kRGBA_GrColorComponentFlags;
}
// Run through the coverage stages and see if the coverage will be all ones at the end.
for (int s = 0; s < fCoverageStages.count(); ++s) {
const GrEffectRef* effect = fCoverageStages[s].getEffect();
(*effect)->getConstantColorComponents(&coverage, &validComponentFlags);
}
return (kRGBA_GrColorComponentFlags == validComponentFlags) && (0xffffffff == coverage);
}
////////////////////////////////////////////////////////////////////////////////
// Some blend modes allow folding a fractional coverage value into the color's alpha channel, while
// others will blend incorrectly.
bool GrDrawState::canTweakAlphaForCoverage() const {
/*
The fractional coverage is f.
The src and dst coeffs are Cs and Cd.
The dst and src colors are S and D.
We want the blend to compute: f*Cs*S + (f*Cd + (1-f))D. By tweaking the source color's alpha
we're replacing S with S'=fS. It's obvious that that first term will always be ok. The second
term can be rearranged as [1-(1-Cd)f]D. By substituting in the various possibilities for Cd we
find that only 1, ISA, and ISC produce the correct destination when applied to S' and D.
Also, if we're directly rendering coverage (isCoverageDrawing) then coverage is treated as
color by definition.
*/
return kOne_GrBlendCoeff == fCommon.fDstBlend ||
kISA_GrBlendCoeff == fCommon.fDstBlend ||
kISC_GrBlendCoeff == fCommon.fDstBlend ||
this->isCoverageDrawing();
}
GrDrawState::BlendOptFlags GrDrawState::getBlendOpts(bool forceCoverage,
GrBlendCoeff* srcCoeff,
GrBlendCoeff* dstCoeff) const {
GrBlendCoeff bogusSrcCoeff, bogusDstCoeff;
if (NULL == srcCoeff) {
srcCoeff = &bogusSrcCoeff;
}
*srcCoeff = this->getSrcBlendCoeff();
if (NULL == dstCoeff) {
dstCoeff = &bogusDstCoeff;
}
*dstCoeff = this->getDstBlendCoeff();
if (this->isColorWriteDisabled()) {
*srcCoeff = kZero_GrBlendCoeff;
*dstCoeff = kOne_GrBlendCoeff;
}
bool srcAIsOne = this->srcAlphaWillBeOne();
bool dstCoeffIsOne = kOne_GrBlendCoeff == *dstCoeff ||
(kSA_GrBlendCoeff == *dstCoeff && srcAIsOne);
bool dstCoeffIsZero = kZero_GrBlendCoeff == *dstCoeff ||
(kISA_GrBlendCoeff == *dstCoeff && srcAIsOne);
bool covIsZero = !this->isCoverageDrawing() &&
!this->hasCoverageVertexAttribute() &&
0 == this->getCoverage();
// When coeffs are (0,1) there is no reason to draw at all, unless
// stenciling is enabled. Having color writes disabled is effectively
// (0,1). The same applies when coverage is known to be 0.
if ((kZero_GrBlendCoeff == *srcCoeff && dstCoeffIsOne) || covIsZero) {
if (this->getStencil().doesWrite()) {
return kDisableBlend_BlendOptFlag |
kEmitCoverage_BlendOptFlag;
} else {
return kSkipDraw_BlendOptFlag;
}
}
// check for coverage due to constant coverage, per-vertex coverage, or coverage stage
bool hasCoverage = forceCoverage ||
0xffffffff != this->getCoverage() ||
this->hasCoverageVertexAttribute() ||
fCoverageStages.count() > 0;
// if we don't have coverage we can check whether the dst
// has to read at all. If not, we'll disable blending.
if (!hasCoverage) {
if (dstCoeffIsZero) {
if (kOne_GrBlendCoeff == *srcCoeff) {
// if there is no coverage and coeffs are (1,0) then we
// won't need to read the dst at all, it gets replaced by src
return kDisableBlend_BlendOptFlag;
} else if (kZero_GrBlendCoeff == *srcCoeff) {
// if the op is "clear" then we don't need to emit a color
// or blend, just write transparent black into the dst.
*srcCoeff = kOne_GrBlendCoeff;
*dstCoeff = kZero_GrBlendCoeff;
return kDisableBlend_BlendOptFlag | kEmitTransBlack_BlendOptFlag;
}
}
} else if (this->isCoverageDrawing()) {
// we have coverage but we aren't distinguishing it from alpha by request.
return kCoverageAsAlpha_BlendOptFlag;
} else {
// check whether coverage can be safely rolled into alpha
// of if we can skip color computation and just emit coverage
if (this->canTweakAlphaForCoverage()) {
return kCoverageAsAlpha_BlendOptFlag;
}
if (dstCoeffIsZero) {
if (kZero_GrBlendCoeff == *srcCoeff) {
// the source color is not included in the blend
// the dst coeff is effectively zero so blend works out to:
// (c)(0)D + (1-c)D = (1-c)D.
*dstCoeff = kISA_GrBlendCoeff;
return kEmitCoverage_BlendOptFlag;
} else if (srcAIsOne) {
// the dst coeff is effectively zero so blend works out to:
// cS + (c)(0)D + (1-c)D = cS + (1-c)D.
// If Sa is 1 then we can replace Sa with c
// and set dst coeff to 1-Sa.
*dstCoeff = kISA_GrBlendCoeff;
return kCoverageAsAlpha_BlendOptFlag;
}
} else if (dstCoeffIsOne) {
// the dst coeff is effectively one so blend works out to:
// cS + (c)(1)D + (1-c)D = cS + D.
*dstCoeff = kOne_GrBlendCoeff;
return kCoverageAsAlpha_BlendOptFlag;
}
}
if (kOne_GrBlendCoeff == *srcCoeff &&
kZero_GrBlendCoeff == *dstCoeff &&
this->willEffectReadDstColor()) {
// In this case the shader will fully resolve the color, coverage, and dst and we don't
// need blending.
return kDisableBlend_BlendOptFlag;
}
return kNone_BlendOpt;
}
////////////////////////////////////////////////////////////////////////////////
void GrDrawState::AutoViewMatrixRestore::restore() {
if (NULL != fDrawState) {
SkDEBUGCODE(--fDrawState->fBlockEffectRemovalCnt;)
fDrawState->fCommon.fViewMatrix = fViewMatrix;
SkASSERT(fDrawState->numColorStages() >= fNumColorStages);
int numCoverageStages = fSavedCoordChanges.count() - fNumColorStages;
SkASSERT(fDrawState->numCoverageStages() >= numCoverageStages);
int i = 0;
for (int s = 0; s < fNumColorStages; ++s, ++i) {
fDrawState->fColorStages[s].restoreCoordChange(fSavedCoordChanges[i]);
}
for (int s = 0; s < numCoverageStages; ++s, ++i) {
fDrawState->fCoverageStages[s].restoreCoordChange(fSavedCoordChanges[i]);
}
fDrawState = NULL;
}
}
void GrDrawState::AutoViewMatrixRestore::set(GrDrawState* drawState,
const SkMatrix& preconcatMatrix) {
this->restore();
SkASSERT(NULL == fDrawState);
if (NULL == drawState || preconcatMatrix.isIdentity()) {
return;
}
fDrawState = drawState;
fViewMatrix = drawState->getViewMatrix();
drawState->fCommon.fViewMatrix.preConcat(preconcatMatrix);
this->doEffectCoordChanges(preconcatMatrix);
SkDEBUGCODE(++fDrawState->fBlockEffectRemovalCnt;)
}
bool GrDrawState::AutoViewMatrixRestore::setIdentity(GrDrawState* drawState) {
this->restore();
if (NULL == drawState) {
return false;
}
if (drawState->getViewMatrix().isIdentity()) {
return true;
}
fViewMatrix = drawState->getViewMatrix();
if (0 == drawState->numTotalStages()) {
drawState->fCommon.fViewMatrix.reset();
fDrawState = drawState;
fNumColorStages = 0;
fSavedCoordChanges.reset(0);
SkDEBUGCODE(++fDrawState->fBlockEffectRemovalCnt;)
return true;
} else {
SkMatrix inv;
if (!fViewMatrix.invert(&inv)) {
return false;
}
drawState->fCommon.fViewMatrix.reset();
fDrawState = drawState;
this->doEffectCoordChanges(inv);
SkDEBUGCODE(++fDrawState->fBlockEffectRemovalCnt;)
return true;
}
}
void GrDrawState::AutoViewMatrixRestore::doEffectCoordChanges(const SkMatrix& coordChangeMatrix) {
fSavedCoordChanges.reset(fDrawState->numTotalStages());
int i = 0;
fNumColorStages = fDrawState->numColorStages();
for (int s = 0; s < fNumColorStages; ++s, ++i) {
fDrawState->fColorStages[s].saveCoordChange(&fSavedCoordChanges[i]);
fDrawState->fColorStages[s].localCoordChange(coordChangeMatrix);
}
int numCoverageStages = fDrawState->numCoverageStages();
for (int s = 0; s < numCoverageStages; ++s, ++i) {
fDrawState->fCoverageStages[s].saveCoordChange(&fSavedCoordChanges[i]);
fDrawState->fCoverageStages[s].localCoordChange(coordChangeMatrix);
}
}
|