aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/GrClipMaskManager.cpp
blob: 1a892d80dc956dcb947377f091b7140465e255cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747

/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "GrClipMaskManager.h"
#include "GrGpu.h"
#include "GrRenderTarget.h"
#include "GrStencilBuffer.h"
#include "GrPathRenderer.h"
#include "GrPaint.h"

//#define GR_AA_CLIP 1

////////////////////////////////////////////////////////////////////////////////
void ScissoringSettings::setupScissoring(GrGpu* gpu) {
    if (!fEnableScissoring) {
        gpu->disableScissor();
        return;
    }

    gpu->enableScissoring(fScissorRect);
}

namespace {
// set up the draw state to enable the aa clipping mask. Besides setting up the 
// sampler matrix this also alters the vertex layout
void setupDrawStateAAClip(GrGpu* gpu, GrTexture* result, const GrRect &bound) {
    GrDrawState* drawState = gpu->drawState();
    GrAssert(drawState);

    static const int maskStage = GrPaint::kTotalStages+1;

    GrMatrix mat;
    mat.setIDiv(result->width(), result->height());
    mat.preTranslate(-bound.fLeft, -bound.fTop);
    mat.preConcat(drawState->getViewMatrix());

    drawState->sampler(maskStage)->reset(GrSamplerState::kClamp_WrapMode,
                                         GrSamplerState::kNearest_Filter,
                                         mat);

    drawState->setTexture(maskStage, result);

    // The AA clipping determination happens long after the geometry has
    // been set up to draw. Here we directly enable the AA clip mask stage
    gpu->addToVertexLayout(
                GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(maskStage));
}

}

////////////////////////////////////////////////////////////////////////////////
// sort out what kind of clip mask needs to be created: alpha, stencil
// or scissor
bool GrClipMaskManager::createClipMask(GrGpu* gpu, 
                                       const GrClip& clipIn,
                                       ScissoringSettings* scissorSettings) {

    GrAssert(scissorSettings);

    scissorSettings->fEnableScissoring = false;
    fClipMaskInStencil = false;
    fClipMaskInAlpha = false;

    GrDrawState* drawState = gpu->drawState();
    if (!drawState->isClipState()) {
        return true;
    }

    GrRenderTarget* rt = drawState->getRenderTarget();

    // GrDrawTarget should have filtered this for us
    GrAssert(NULL != rt);

#if GR_AA_CLIP
    // If MSAA is enabled use the (faster) stencil path for AA clipping
    // otherwise the alpha clip mask is our only option
    if (clipIn.requiresAA() && 0 == rt->numSamples()) {
        // Since we are going to create a destination texture of the correct
        // size for the mask (rather than being bound by the size of the
        // render target) we aren't going to use scissoring like the stencil
        // path does (see scissorSettings below)
        GrTexture* result = NULL;
        GrRect bound;
        if (this->createAlphaClipMask(gpu, clipIn, &result, &bound)) {
            fClipMaskInAlpha = true;

            setupDrawStateAAClip(gpu, result, bound);
            return true;
        }

        // if alpha clip mask creation fails fall through to the stencil
        // buffer method
    }
#endif // GR_AA_CLIP

    GrRect bounds;
    GrRect rtRect;
    rtRect.setLTRB(0, 0,
                    GrIntToScalar(rt->width()), GrIntToScalar(rt->height()));
    if (clipIn.hasConservativeBounds()) {
        bounds = clipIn.getConservativeBounds();
        if (!bounds.intersect(rtRect)) {
            bounds.setEmpty();
        }
    } else {
        bounds = rtRect;
    }

    bounds.roundOut(&scissorSettings->fScissorRect);
    if  (scissorSettings->fScissorRect.isEmpty()) {
        scissorSettings->fScissorRect.setLTRB(0,0,0,0);
        // TODO: I think we can do an early exit here - after refactoring try:
        //  set fEnableScissoring to true but leave fClipMaskInStencil false
        //  and return - everything is going to be scissored away anyway!
    }
    scissorSettings->fEnableScissoring = true;

    // use the stencil clip if we can't represent the clip as a rectangle.
    fClipMaskInStencil = !clipIn.isRect() && !clipIn.isEmpty() &&
                         !bounds.isEmpty();

    if (fClipMaskInStencil) {
        return this->createStencilClipMask(gpu, clipIn, bounds, scissorSettings);
    }

    return true;
}

#define VISUALIZE_COMPLEX_CLIP 0

#if VISUALIZE_COMPLEX_CLIP
    #include "GrRandom.h"
    GrRandom gRandom;
    #define SET_RANDOM_COLOR drawState->setColor(0xff000000 | gRandom.nextU());
#else
    #define SET_RANDOM_COLOR
#endif

namespace {
////////////////////////////////////////////////////////////////////////////////
// determines how many elements at the head of the clip can be skipped and
// whether the initial clear should be to the inside- or outside-the-clip value,
// and what op should be used to draw the first element that isn't skipped.
int process_initial_clip_elements(const GrClip& clip,
                                  const GrRect& bounds,
                                  bool* clearToInside,
                                  SkRegion::Op* startOp) {

    // logically before the first element of the clip stack is 
    // processed the clip is entirely open. However, depending on the
    // first set op we may prefer to clear to 0 for performance. We may
    // also be able to skip the initial clip paths/rects. We loop until
    // we cannot skip an element.
    int curr;
    bool done = false;
    *clearToInside = true;
    int count = clip.getElementCount();

    for (curr = 0; curr < count && !done; ++curr) {
        switch (clip.getOp(curr)) {
            case SkRegion::kReplace_Op:
                // replace ignores everything previous
                *startOp = SkRegion::kReplace_Op;
                *clearToInside = false;
                done = true;
                break;
            case SkRegion::kIntersect_Op:
                // if this element contains the entire bounds then we
                // can skip it.
                if (kRect_ClipType == clip.getElementType(curr)
                    && clip.getRect(curr).contains(bounds)) {
                    break;
                }
                // if everything is initially clearToInside then intersect is
                // same as clear to 0 and treat as a replace. Otherwise,
                // set stays empty.
                if (*clearToInside) {
                    *startOp = SkRegion::kReplace_Op;
                    *clearToInside = false;
                    done = true;
                }
                break;
                // we can skip a leading union.
            case SkRegion::kUnion_Op:
                // if everything is initially outside then union is
                // same as replace. Otherwise, every pixel is still 
                // clearToInside
                if (!*clearToInside) {
                    *startOp = SkRegion::kReplace_Op;
                    done = true;
                }
                break;
            case SkRegion::kXOR_Op:
                // xor is same as difference or replace both of which
                // can be 1-pass instead of 2 for xor.
                if (*clearToInside) {
                    *startOp = SkRegion::kDifference_Op;
                } else {
                    *startOp = SkRegion::kReplace_Op;
                }
                done = true;
                break;
            case SkRegion::kDifference_Op:
                // if all pixels are clearToInside then we have to process the
                // difference, otherwise it has no effect and all pixels
                // remain outside.
                if (*clearToInside) {
                    *startOp = SkRegion::kDifference_Op;
                    done = true;
                }
                break;
            case SkRegion::kReverseDifference_Op:
                // if all pixels are clearToInside then reverse difference
                // produces empty set. Otherise it is same as replace
                if (*clearToInside) {
                    *clearToInside = false;
                } else {
                    *startOp = SkRegion::kReplace_Op;
                    done = true;
                }
                break;
            default:
                GrCrash("Unknown set op.");
        }
    }
    return done ? curr-1 : count;
}

}


namespace {

////////////////////////////////////////////////////////////////////////////////
// set up the OpenGL blend function to perform the specified 
// boolean operation for alpha clip mask creation 
void setUpBooleanBlendCoeffs(GrDrawState* drawState, SkRegion::Op op) {

    switch (op) {
        case SkRegion::kReplace_Op:
            drawState->setBlendFunc(kOne_BlendCoeff, kZero_BlendCoeff);
            break;
        case SkRegion::kIntersect_Op:
            drawState->setBlendFunc(kDC_BlendCoeff, kZero_BlendCoeff);
            break;
        case SkRegion::kUnion_Op:
            drawState->setBlendFunc(kOne_BlendCoeff, kISC_BlendCoeff);
            break;
        case SkRegion::kXOR_Op:
            drawState->setBlendFunc(kIDC_BlendCoeff, kISC_BlendCoeff);
            break;
        case SkRegion::kDifference_Op:
            drawState->setBlendFunc(kZero_BlendCoeff, kISC_BlendCoeff);
            break;
        case SkRegion::kReverseDifference_Op:
            drawState->setBlendFunc(kIDC_BlendCoeff, kZero_BlendCoeff);
            break;
        default:
            GrAssert(false);
            break;
    }
}

}

////////////////////////////////////////////////////////////////////////////////
bool GrClipMaskManager::drawPath(GrGpu* gpu,
                                 const SkPath& path,
                                 GrPathFill fill,
                                 bool doAA) {

    GrPathRenderer* pr = this->getClipPathRenderer(gpu, path, fill, doAA);
    if (NULL == pr) {
        return false;
    }

    pr->drawPath(path, fill, NULL, gpu, 0, doAA);
    return true;
}

////////////////////////////////////////////////////////////////////////////////
bool GrClipMaskManager::drawClipShape(GrGpu* gpu,
                                      GrTexture* target,
                                      const GrClip& clipIn,
                                      int index) {
    GrDrawState* drawState = gpu->drawState();
    GrAssert(NULL != drawState);

    drawState->setRenderTarget(target->asRenderTarget());

    if (kRect_ClipType == clipIn.getElementType(index)) {
        if (clipIn.getDoAA(index)) {
            // convert the rect to a path for AA
            SkPath temp;
            temp.addRect(clipIn.getRect(index));

            return this->drawPath(gpu, temp,
                                  kEvenOdd_PathFill, clipIn.getDoAA(index));
        } else {
            gpu->drawSimpleRect(clipIn.getRect(index), NULL, 0);
        }
    } else {
        return this->drawPath(gpu,
                              clipIn.getPath(index),
                              clipIn.getPathFill(index),
                              clipIn.getDoAA(index));
    }
    return true;
}

void GrClipMaskManager::drawTexture(GrGpu* gpu,
                                    GrTexture* target,
                                    const GrRect& rect,
                                    GrTexture* texture) {
    GrDrawState* drawState = gpu->drawState();
    GrAssert(NULL != drawState);

    // no AA here since it is encoded in the texture
    drawState->setRenderTarget(target->asRenderTarget());

    GrMatrix sampleM;
    sampleM.setIDiv(texture->width(), texture->height());
    drawState->setTexture(0, texture);

    drawState->sampler(0)->reset(GrSamplerState::kClamp_WrapMode,
                                 GrSamplerState::kNearest_Filter,
                                 sampleM);

    gpu->drawSimpleRect(rect, NULL, 1 << 0);

    drawState->setTexture(0, NULL);
}

namespace {

void clear(GrGpu* gpu,
           GrTexture* target,
           GrColor color) {
    GrDrawState* drawState = gpu->drawState();
    GrAssert(NULL != drawState);

    // zap entire target to specified color
    drawState->setRenderTarget(target->asRenderTarget());
    gpu->clear(NULL, color);
}

// get a texture to act as a temporary buffer for AA clip boolean operations
// TODO: given the expense of createTexture we may want to just cache this too
void needTemp(GrGpu *gpu, const GrTextureDesc& desc, GrTexture** temp) {
    if (NULL != *temp) {
        // we've already allocated the temp texture
        return;
    }

     *temp = gpu->createTexture(desc, NULL, 0);
}

}

void GrClipMaskManager::getAccum(GrGpu* gpu,
                                 const GrTextureDesc& desc,
                                 GrTexture** accum) {
    GrAssert(NULL == *accum);

    // since we are getting an accumulator we know our cache is shot. See
    // if we can reuse the texture stored in the cache
    if (fAACache.getLastMaskWidth() >= desc.fWidth &&
        fAACache.getLastMaskHeight() >= desc.fHeight) {
        // we can just reuse the existing texture
        *accum = fAACache.detachLastMask();
        fAACache.reset();
    } else {
        *accum = gpu->createTexture(desc, NULL, 0);
    }

    GrAssert(1 == (*accum)->getRefCnt());
}

////////////////////////////////////////////////////////////////////////////////
// Create a 8-bit clip mask in alpha
bool GrClipMaskManager::createAlphaClipMask(GrGpu* gpu,
                                            const GrClip& clipIn,
                                            GrTexture** result,
                                            GrRect *resultBounds) {

    GrDrawState* origDrawState = gpu->drawState();
    GrAssert(origDrawState->isClipState());

    GrRenderTarget* rt = origDrawState->getRenderTarget();
    GrAssert(NULL != rt);

    if (fAACache.canReuse(clipIn, rt->width(), rt->height())) {
        *result = fAACache.getLastMask();
        *resultBounds = fAACache.getLastBound();
        return true;
    }

    GrRect rtRect;
    rtRect.setLTRB(0, 0,
                    GrIntToScalar(rt->width()), GrIntToScalar(rt->height()));


    // unlike the stencil path the alpha path is not bound to the size of the
    // render target - determine the minimum size required for the mask
    GrRect bounds;

    if (clipIn.hasConservativeBounds()) {
        bounds = clipIn.getConservativeBounds();
        if (!bounds.intersect(rtRect)) {
            // the mask will be empty in this case
            GrAssert(false);
            bounds.setEmpty();
        }
    } else {
        // still locked to the size of the render target
        bounds = rtRect;
    }

    bounds.roundOut();

    // need to outset a pixel since the standard bounding box computation
    // path doesn't leave any room for antialiasing (esp. w.r.t. rects)
    bounds.outset(SkIntToScalar(1), SkIntToScalar(1));

    // TODO: make sure we don't outset if bounds are still 0,0 @ min

    GrAssert(SkScalarIsInt(bounds.width()));
    GrAssert(SkScalarIsInt(bounds.height()));

    const GrTextureDesc desc = {
        kRenderTarget_GrTextureFlagBit|kNoStencil_GrTextureFlagBit,
        SkScalarCeilToInt(bounds.width()),
        SkScalarCeilToInt(bounds.height()),
        kAlpha_8_GrPixelConfig,
        0           // samples
    };

    GrRect newRTBounds;
    newRTBounds.setLTRB(0, 0, bounds.width(), bounds.height());

    GrTexture* accum = NULL, *temp = NULL;
    
    getAccum(gpu, desc, &accum);
    if (NULL == accum) {
        fClipMaskInAlpha = false;
        SkSafeUnref(accum);
        return false;
    }

    GrDrawTarget::AutoStateRestore asr(gpu, GrDrawTarget::kReset_ASRInit);
    GrDrawState* drawState = gpu->drawState();

    GrDrawTarget::AutoGeometryPush agp(gpu);

    int count = clipIn.getElementCount();

    if (0 != bounds.fTop || 0 != bounds.fLeft) {
        // if we were able to trim down the size of the mask we need to 
        // offset the paths & rects that will be used to compute it
        GrMatrix m;

        m.setTranslate(-bounds.fLeft, -bounds.fTop);

        drawState->setViewMatrix(m);
    }

    bool clearToInside;
    SkRegion::Op startOp = SkRegion::kReplace_Op; // suppress warning
    int start = process_initial_clip_elements(clipIn,
                                              bounds,
                                              &clearToInside,
                                              &startOp);

    clear(gpu, accum, clearToInside ? 0xffffffff : 0x00000000);

    // walk through each clip element and perform its set op
    for (int c = start; c < count; ++c) {

        SkRegion::Op op = (c == start) ? startOp : clipIn.getOp(c);

        if (SkRegion::kReplace_Op == op) {
            // TODO: replace is actually a lot faster then intersection
            // for this path - refactor the stencil path so it can handle
            // replace ops and alter GrClip to allow them through

            // clear the accumulator and draw the new object directly into it
            clear(gpu, accum, 0x00000000);

            setUpBooleanBlendCoeffs(drawState, op);
            this->drawClipShape(gpu, accum, clipIn, c);

        } else if (SkRegion::kReverseDifference_Op == op ||
                   SkRegion::kIntersect_Op == op) {
            // there is no point in intersecting a screen filling rectangle.
            if (SkRegion::kIntersect_Op == op &&
                kRect_ClipType == clipIn.getElementType(c) &&
                clipIn.getRect(c).contains(bounds)) {
                continue;
            }

            needTemp(gpu, desc, &temp);
            if (NULL == temp) {
                fClipMaskInAlpha = false;
                SkSafeUnref(accum);
                return false;
            }

            // clear the temp target & draw into it
            clear(gpu, temp, 0x00000000);

            setUpBooleanBlendCoeffs(drawState, SkRegion::kReplace_Op);
            this->drawClipShape(gpu, temp, clipIn, c);

            // TODO: rather than adding these two translations here
            // compute the bounding box needed to render the texture
            // into temp
            if (0 != bounds.fTop || 0 != bounds.fLeft) {
                GrMatrix m;

                m.setTranslate(bounds.fLeft, bounds.fTop);

                drawState->preConcatViewMatrix(m);
            }

            // Now draw into the accumulator using the real operation
            // and the temp buffer as a texture
            setUpBooleanBlendCoeffs(drawState, op);
            this->drawTexture(gpu, accum, newRTBounds, temp);

            if (0 != bounds.fTop || 0 != bounds.fLeft) {
                GrMatrix m;

                m.setTranslate(-bounds.fLeft, -bounds.fTop);

                drawState->preConcatViewMatrix(m);
            }

        } else {
            // all the remaining ops can just be directly draw into 
            // the accumulation buffer
            setUpBooleanBlendCoeffs(drawState, op);
            this->drawClipShape(gpu, accum, clipIn, c);
        }
    }

    fAACache.set(clipIn, rt->width(), rt->height(), accum, bounds);
    *result = accum;
    *resultBounds = bounds;
    SkSafeUnref(accum);     // fAACache still has a ref to accum
    SkSafeUnref(temp);

    return true;
}

////////////////////////////////////////////////////////////////////////////////
// Create a 1-bit clip mask in the stencil buffer
bool GrClipMaskManager::createStencilClipMask(GrGpu* gpu, 
                                              const GrClip& clipIn,
                                              const GrRect& bounds,
                                              ScissoringSettings* scissorSettings) {

    GrAssert(fClipMaskInStencil);

    GrDrawState* drawState = gpu->drawState();
    GrAssert(drawState->isClipState());

    GrRenderTarget* rt = drawState->getRenderTarget();
    GrAssert(NULL != rt);

    // TODO: dynamically attach a SB when needed.
    GrStencilBuffer* stencilBuffer = rt->getStencilBuffer();
    if (NULL == stencilBuffer) {
        return false;
    }

    if (stencilBuffer->mustRenderClip(clipIn, rt->width(), rt->height())) {

        stencilBuffer->setLastClip(clipIn, rt->width(), rt->height());

        // we set the current clip to the bounds so that our recursive
        // draws are scissored to them. We use the copy of the complex clip
        // we just stashed on the SB to render from. We set it back after
        // we finish drawing it into the stencil.
        const GrClip& clipCopy = stencilBuffer->getLastClip();
        gpu->setClip(GrClip(bounds));

        GrDrawTarget::AutoStateRestore asr(gpu, GrDrawTarget::kReset_ASRInit);
        drawState = gpu->drawState();
        drawState->setRenderTarget(rt);
        GrDrawTarget::AutoGeometryPush agp(gpu);

        gpu->disableScissor();
#if !VISUALIZE_COMPLEX_CLIP
        drawState->enableState(GrDrawState::kNoColorWrites_StateBit);
#endif

        int count = clipCopy.getElementCount();
        int clipBit = stencilBuffer->bits();
        SkASSERT((clipBit <= 16) &&
                    "Ganesh only handles 16b or smaller stencil buffers");
        clipBit = (1 << (clipBit-1));

        GrRect rtRect;
        rtRect.setLTRB(0, 0,
                       GrIntToScalar(rt->width()), GrIntToScalar(rt->height()));

        bool clearToInside;
        SkRegion::Op startOp = SkRegion::kReplace_Op; // suppress warning
        int start = process_initial_clip_elements(clipCopy,
                                                    rtRect,
                                                    &clearToInside,
                                                    &startOp);

        gpu->clearStencilClip(scissorSettings->fScissorRect, clearToInside);

        // walk through each clip element and perform its set op
        // with the existing clip.
        for (int c = start; c < count; ++c) {
            GrPathFill fill;
            bool fillInverted;
            // enabled at bottom of loop
            drawState->disableState(GrGpu::kModifyStencilClip_StateBit);

            bool canRenderDirectToStencil; // can the clip element be drawn
                                            // directly to the stencil buffer
                                            // with a non-inverted fill rule
                                            // without extra passes to
                                            // resolve in/out status.

            SkRegion::Op op = (c == start) ? startOp : clipCopy.getOp(c);

            GrPathRenderer* pr = NULL;
            const SkPath* clipPath = NULL;
            if (kRect_ClipType == clipCopy.getElementType(c)) {
                canRenderDirectToStencil = true;
                fill = kEvenOdd_PathFill;
                fillInverted = false;
                // there is no point in intersecting a screen filling
                // rectangle.
                if (SkRegion::kIntersect_Op == op &&
                    clipCopy.getRect(c).contains(rtRect)) {
                    continue;
                }
            } else {
                fill = clipCopy.getPathFill(c);
                fillInverted = GrIsFillInverted(fill);
                fill = GrNonInvertedFill(fill);
                clipPath = &clipCopy.getPath(c);
                pr = this->getClipPathRenderer(gpu, *clipPath, fill, false);
                if (NULL == pr) {
                    fClipMaskInStencil = false;
                    gpu->setClip(clipCopy);     // restore to the original
                    return false;
                }
                canRenderDirectToStencil =
                    !pr->requiresStencilPass(*clipPath, fill, gpu);
            }

            int passes;
            GrStencilSettings stencilSettings[GrStencilSettings::kMaxStencilClipPasses];

            bool canDrawDirectToClip; // Given the renderer, the element,
                                        // fill rule, and set operation can
                                        // we render the element directly to
                                        // stencil bit used for clipping.
            canDrawDirectToClip =
                GrStencilSettings::GetClipPasses(op,
                                                    canRenderDirectToStencil,
                                                    clipBit,
                                                    fillInverted,
                                                    &passes, stencilSettings);

            // draw the element to the client stencil bits if necessary
            if (!canDrawDirectToClip) {
                GR_STATIC_CONST_SAME_STENCIL(gDrawToStencil,
                    kIncClamp_StencilOp,
                    kIncClamp_StencilOp,
                    kAlways_StencilFunc,
                    0xffff,
                    0x0000,
                    0xffff);
                SET_RANDOM_COLOR
                if (kRect_ClipType == clipCopy.getElementType(c)) {
                    *drawState->stencil() = gDrawToStencil;
                    gpu->drawSimpleRect(clipCopy.getRect(c), NULL, 0);
                } else {
                    if (canRenderDirectToStencil) {
                        *drawState->stencil() = gDrawToStencil;
                        pr->drawPath(*clipPath, fill, NULL, gpu, 0, false);
                    } else {
                        pr->drawPathToStencil(*clipPath, fill, gpu);
                    }
                }
            }

            // now we modify the clip bit by rendering either the clip
            // element directly or a bounding rect of the entire clip.
            drawState->enableState(GrGpu::kModifyStencilClip_StateBit);
            for (int p = 0; p < passes; ++p) {
                *drawState->stencil() = stencilSettings[p];
                if (canDrawDirectToClip) {
                    if (kRect_ClipType == clipCopy.getElementType(c)) {
                        SET_RANDOM_COLOR
                        gpu->drawSimpleRect(clipCopy.getRect(c), NULL, 0);
                    } else {
                        SET_RANDOM_COLOR
                        pr->drawPath(*clipPath, fill, NULL, gpu, 0, false);
                    }
                } else {
                    SET_RANDOM_COLOR
                    gpu->drawSimpleRect(bounds, NULL, 0);
                }
            }
        }
        // restore clip
        gpu->setClip(clipCopy);
        // recusive draws would have disabled this since they drew with
        // the clip bounds as clip.
        fClipMaskInStencil = true;
    }

    return true;
}

////////////////////////////////////////////////////////////////////////////////
GrPathRenderer* GrClipMaskManager::getClipPathRenderer(GrGpu* gpu,
                                                       const SkPath& path,
                                                       GrPathFill fill,
                                                       bool antiAlias) {
    if (NULL == fPathRendererChain) {
        fPathRendererChain = 
            new GrPathRendererChain(gpu->getContext(),
                                    GrPathRendererChain::kNone_UsageFlag);
    }
    return fPathRendererChain->getPathRenderer(path, fill, gpu, antiAlias);
}

////////////////////////////////////////////////////////////////////////////////
void GrClipMaskManager::freeResources() {
    // in case path renderer has any GrResources, start from scratch
    GrSafeSetNull(fPathRendererChain);
}