1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrBatchBuffer_DEFINED
#define GrBatchBuffer_DEFINED
#include "GrBatchAtlas.h"
#include "GrBufferAllocPool.h"
#include "GrContext.h"
#include "GrPendingProgramElement.h"
#include "GrPipeline.h"
#include "GrTRecorder.h"
#include "GrVertices.h"
/*
* GrBatch instances use this object to allocate space for their geometry and to issue the draws
* that render their batch.
*/
class GrBatchTarget : public SkNoncopyable {
public:
typedef GrBatchAtlas::BatchToken BatchToken;
GrBatchTarget(GrGpu* gpu);
void initDraw(const GrPrimitiveProcessor* primProc, const GrPipeline* pipeline) {
GrNEW_APPEND_TO_RECORDER(fFlushBuffer, BufferedFlush, (primProc, pipeline));
fNumberOfDraws++;
fCurrentToken++;
}
class TextureUploader {
public:
TextureUploader(GrGpu* gpu) : fGpu(gpu) { SkASSERT(gpu); }
/**
* Updates the pixels in a rectangle of a texture.
*
* @param left left edge of the rectangle to write (inclusive)
* @param top top edge of the rectangle to write (inclusive)
* @param width width of rectangle to write in pixels.
* @param height height of rectangle to write in pixels.
* @param config the pixel config of the source buffer
* @param buffer memory to read pixels from
* @param rowBytes number of bytes between consecutive rows. Zero
* means rows are tightly packed.
*/
bool writeTexturePixels(GrTexture* texture,
int left, int top, int width, int height,
GrPixelConfig config, const void* buffer,
size_t rowBytes) {
return fGpu->writeTexturePixels(texture, left, top, width, height, config, buffer,
rowBytes);
}
private:
GrGpu* fGpu;
};
class Uploader : public SkRefCnt {
public:
Uploader(BatchToken lastUploadToken) : fLastUploadToken(lastUploadToken) {}
BatchToken lastUploadToken() const { return fLastUploadToken; }
virtual void upload(TextureUploader)=0;
private:
BatchToken fLastUploadToken;
};
void upload(Uploader* upload) {
if (this->asapToken() == upload->lastUploadToken()) {
fAsapUploads.push_back().reset(SkRef(upload));
} else {
fInlineUploads.push_back().reset(SkRef(upload));
}
}
void draw(const GrVertices& vertices) {
fFlushBuffer.back().fVertexDraws.push_back(vertices);
}
bool isIssued(BatchToken token) const { return fLastFlushedToken >= token; }
BatchToken currentToken() const { return fCurrentToken; }
BatchToken asapToken() const { return fLastFlushedToken + 1; }
// TODO much of this complexity goes away when batch is everywhere
void resetNumberOfDraws() { fNumberOfDraws = 0; }
int numberOfDraws() const { return fNumberOfDraws; }
void preFlush() {
this->unmapVertexAndIndexBuffers();
int updateCount = fAsapUploads.count();
for (int i = 0; i < updateCount; i++) {
fAsapUploads[i]->upload(TextureUploader(fGpu));
}
fInlineUpdatesIndex = 0;
fIter = FlushBuffer::Iter(fFlushBuffer);
}
void flushNext(int n);
void postFlush() {
SkASSERT(!fIter.next());
fFlushBuffer.reset();
fAsapUploads.reset();
fInlineUploads.reset();
}
const GrCaps& caps() const { return *fGpu->caps(); }
GrResourceProvider* resourceProvider() const { return fGpu->getContext()->resourceProvider(); }
void* makeVertSpace(size_t vertexSize, int vertexCount,
const GrVertexBuffer** buffer, int* startVertex);
uint16_t* makeIndexSpace(int indexCount,
const GrIndexBuffer** buffer, int* startIndex);
// A helper for draws which overallocate and then return data to the pool
void putBackIndices(size_t indices) { fIndexPool->putBack(indices * sizeof(uint16_t)); }
void putBackVertices(size_t vertices, size_t vertexStride) {
fVertexPool->putBack(vertices * vertexStride);
}
void reset() {
fVertexPool->reset();
fIndexPool->reset();
}
private:
void unmapVertexAndIndexBuffers() {
fVertexPool->unmap();
fIndexPool->unmap();
}
GrGpu* fGpu;
SkAutoTDelete<GrVertexBufferAllocPool> fVertexPool;
SkAutoTDelete<GrIndexBufferAllocPool> fIndexPool;
typedef void* TBufferAlign; // This wouldn't be enough align if a command used long double.
struct BufferedFlush {
BufferedFlush(const GrPrimitiveProcessor* primProc, const GrPipeline* pipeline)
: fPrimitiveProcessor(primProc)
, fPipeline(pipeline) {}
typedef GrPendingProgramElement<const GrPrimitiveProcessor> ProgramPrimitiveProcessor;
ProgramPrimitiveProcessor fPrimitiveProcessor;
const GrPipeline* fPipeline;
GrBatchTracker fBatchTracker;
SkSTArray<1, GrVertices, true> fVertexDraws;
};
enum {
kFlushBufferInitialSizeInBytes = 8 * sizeof(BufferedFlush),
};
typedef GrTRecorder<BufferedFlush, TBufferAlign> FlushBuffer;
FlushBuffer fFlushBuffer;
// TODO this is temporary
FlushBuffer::Iter fIter;
int fNumberOfDraws;
BatchToken fCurrentToken;
BatchToken fLastFlushedToken; // The next token to be flushed
SkTArray<SkAutoTUnref<Uploader>, true> fAsapUploads;
SkTArray<SkAutoTUnref<Uploader>, true> fInlineUploads;
int fInlineUpdatesIndex;
};
#endif
|