1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
|
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrAtlasTextBlob_DEFINED
#define GrAtlasTextBlob_DEFINED
#include "GrBatchAtlas.h"
#include "GrBatchFontCache.h"
#include "GrColor.h"
#include "SkDescriptor.h"
#include "SkMaskFilter.h"
#include "GrMemoryPool.h"
#include "SkSurfaceProps.h"
#include "SkTInternalLList.h"
// With this flag enabled, the GrAtlasTextContext will, as a sanity check, regenerate every blob
// that comes in to verify the integrity of its cache
//#define CACHE_SANITY_CHECK // VERY SLOW
/*
* A GrAtlasTextBlob contains a fully processed SkTextBlob, suitable for nearly immediate drawing
* on the GPU. These are initially created with valid positions and colors, but invalid
* texture coordinates. The GrAtlasTextBlob itself has a few Blob-wide properties, and also
* consists of a number of runs. Runs inside a blob are flushed individually so they can be
* reordered.
*
* The only thing(aside from a memcopy) required to flush a GrAtlasTextBlob is to ensure that
* the GrAtlas will not evict anything the Blob needs.
*
* Note: This struct should really be named GrCachedAtasTextBlob, but that is too verbose.
*
* *WARNING* If you add new fields to this struct, then you may need to to update AssertEqual
*/
struct GrAtlasTextBlob : public SkRefCnt {
SK_DECLARE_INTERNAL_LLIST_INTERFACE(GrAtlasTextBlob);
/*
* Each Run inside of the blob can have its texture coordinates regenerated if required.
* To determine if regeneration is necessary, fAtlasGeneration is used. If there have been
* any evictions inside of the atlas, then we will simply regenerate Runs. We could track
* this at a more fine grained level, but its not clear if this is worth it, as evictions
* should be fairly rare.
*
* One additional point, each run can contain glyphs with any of the three mask formats.
* We call these SubRuns. Because a subrun must be a contiguous range, we have to create
* a new subrun each time the mask format changes in a run. In theory, a run can have as
* many SubRuns as it has glyphs, ie if a run alternates between color emoji and A8. In
* practice, the vast majority of runs have only a single subrun.
*
* Finally, for runs where the entire thing is too large for the GrAtlasTextContext to
* handle, we have a bit to mark the run as flusahable via rendering as paths. It is worth
* pointing. It would be a bit expensive to figure out ahead of time whether or not a run
* can flush in this manner, so we always allocate vertices for the run, regardless of
* whether or not it is too large. The benefit of this strategy is that we can always reuse
* a blob allocation regardless of viewmatrix changes. We could store positions for these
* glyphs. However, its not clear if this is a win because we'd still have to either go the
* glyph cache to get the path at flush time, or hold onto the path in the cache, which
* would greatly increase the memory of these cached items.
*/
struct Run {
Run()
: fColor(GrColor_ILLEGAL)
, fInitialized(false)
, fDrawAsPaths(false) {
fVertexBounds.setLargestInverted();
// To ensure we always have one subrun, we push back a fresh run here
fSubRunInfo.push_back();
}
struct SubRunInfo {
SubRunInfo()
: fAtlasGeneration(GrBatchAtlas::kInvalidAtlasGeneration)
, fVertexStartIndex(0)
, fVertexEndIndex(0)
, fGlyphStartIndex(0)
, fGlyphEndIndex(0)
, fDrawAsDistanceFields(false) {}
SubRunInfo(const SubRunInfo& that)
: fBulkUseToken(that.fBulkUseToken)
, fStrike(SkSafeRef(that.fStrike.get()))
, fAtlasGeneration(that.fAtlasGeneration)
, fVertexStartIndex(that.fVertexStartIndex)
, fVertexEndIndex(that.fVertexEndIndex)
, fGlyphStartIndex(that.fGlyphStartIndex)
, fGlyphEndIndex(that.fGlyphEndIndex)
, fTextRatio(that.fTextRatio)
, fMaskFormat(that.fMaskFormat)
, fDrawAsDistanceFields(that.fDrawAsDistanceFields)
, fUseLCDText(that.fUseLCDText) {
}
// Distance field text cannot draw coloremoji, and so has to fall back. However,
// though the distance field text and the coloremoji may share the same run, they
// will have different descriptors. If fOverrideDescriptor is non-nullptr, then it
// will be used in place of the run's descriptor to regen texture coords
// TODO we could have a descriptor cache, it would reduce the size of these blobs
// significantly, and then the subrun could just have a refed pointer to the
// correct descriptor.
GrBatchAtlas::BulkUseTokenUpdater fBulkUseToken;
SkAutoTUnref<GrBatchTextStrike> fStrike;
uint64_t fAtlasGeneration;
size_t fVertexStartIndex;
size_t fVertexEndIndex;
uint32_t fGlyphStartIndex;
uint32_t fGlyphEndIndex;
SkScalar fTextRatio; // df property
GrMaskFormat fMaskFormat;
bool fDrawAsDistanceFields; // df property
bool fUseLCDText; // df property
};
SubRunInfo& push_back() {
// Forward glyph / vertex information to seed the new sub run
SubRunInfo& newSubRun = fSubRunInfo.push_back();
SubRunInfo& prevSubRun = fSubRunInfo.fromBack(1);
newSubRun.fGlyphStartIndex = prevSubRun.fGlyphEndIndex;
newSubRun.fGlyphEndIndex = prevSubRun.fGlyphEndIndex;
newSubRun.fVertexStartIndex = prevSubRun.fVertexEndIndex;
newSubRun.fVertexEndIndex = prevSubRun.fVertexEndIndex;
return newSubRun;
}
static const int kMinSubRuns = 1;
SkAutoTUnref<SkTypeface> fTypeface;
SkRect fVertexBounds;
SkSTArray<kMinSubRuns, SubRunInfo> fSubRunInfo;
SkAutoDescriptor fDescriptor;
SkAutoTDelete<SkAutoDescriptor> fOverrideDescriptor; // df properties
GrColor fColor;
bool fInitialized;
bool fDrawAsPaths;
};
struct BigGlyph {
BigGlyph(const SkPath& path, SkScalar vx, SkScalar vy, SkScalar scale, bool applyVM)
: fPath(path)
, fVx(vx)
, fVy(vy)
, fScale(scale)
, fApplyVM(applyVM) {}
SkPath fPath;
SkScalar fVx;
SkScalar fVy;
SkScalar fScale;
bool fApplyVM;
};
struct Key {
Key() {
sk_bzero(this, sizeof(Key));
}
uint32_t fUniqueID;
// Color may affect the gamma of the mask we generate, but in a fairly limited way.
// Each color is assigned to on of a fixed number of buckets based on its
// luminance. For each luminance bucket there is a "canonical color" that
// represents the bucket. This functionality is currently only supported for A8
SkColor fCanonicalColor;
SkPaint::Style fStyle;
SkPixelGeometry fPixelGeometry;
bool fHasBlur;
bool operator==(const Key& other) const {
return 0 == memcmp(this, &other, sizeof(Key));
}
};
struct StrokeInfo {
SkScalar fFrameWidth;
SkScalar fMiterLimit;
SkPaint::Join fJoin;
};
enum TextType {
kHasDistanceField_TextType = 0x1,
kHasBitmap_TextType = 0x2,
};
// all glyph / vertex offsets are into these pools.
unsigned char* fVertices;
GrGlyph** fGlyphs;
Run* fRuns;
GrMemoryPool* fPool;
SkMaskFilter::BlurRec fBlurRec;
StrokeInfo fStrokeInfo;
SkTArray<BigGlyph> fBigGlyphs;
Key fKey;
SkMatrix fViewMatrix;
GrColor fPaintColor;
SkScalar fX;
SkScalar fY;
// We can reuse distance field text, but only if the new viewmatrix would not result in
// a mip change. Because there can be multiple runs in a blob, we track the overall
// maximum minimum scale, and minimum maximum scale, we can support before we need to regen
SkScalar fMaxMinScale;
SkScalar fMinMaxScale;
int fRunCount;
uint8_t fTextType;
GrAtlasTextBlob()
: fMaxMinScale(-SK_ScalarMax)
, fMinMaxScale(SK_ScalarMax)
, fTextType(0) {}
~GrAtlasTextBlob() override {
for (int i = 0; i < fRunCount; i++) {
fRuns[i].~Run();
}
}
static const Key& GetKey(const GrAtlasTextBlob& blob) {
return blob.fKey;
}
static uint32_t Hash(const Key& key) {
return SkChecksum::Murmur3(&key, sizeof(Key));
}
void operator delete(void* p) {
GrAtlasTextBlob* blob = reinterpret_cast<GrAtlasTextBlob*>(p);
blob->fPool->release(p);
}
void* operator new(size_t) {
SkFAIL("All blobs are created by placement new.");
return sk_malloc_throw(0);
}
void* operator new(size_t, void* p) { return p; }
void operator delete(void* target, void* placement) {
::operator delete(target, placement);
}
bool hasDistanceField() const { return SkToBool(fTextType & kHasDistanceField_TextType); }
bool hasBitmap() const { return SkToBool(fTextType & kHasBitmap_TextType); }
void setHasDistanceField() { fTextType |= kHasDistanceField_TextType; }
void setHasBitmap() { fTextType |= kHasBitmap_TextType; }
#ifdef CACHE_SANITY_CHECK
static void AssertEqual(const GrAtlasTextBlob&, const GrAtlasTextBlob&);
size_t fSize;
#endif
};
#endif
|