aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/GrAARectRenderer.cpp
blob: 1d350c335bf721cd444a58931ab5886de49de2d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "GrAARectRenderer.h"
#include "GrGpu.h"
#include "gl/GrGLEffect.h"
#include "gl/GrGLShaderBuilder.h"
#include "gl/GrGLVertexEffect.h"
#include "GrTBackendEffectFactory.h"
#include "SkColorPriv.h"
#include "effects/GrVertexEffect.h"

///////////////////////////////////////////////////////////////////////////////
class GrGLAlignedRectEffect;

// Axis Aligned special case
class GrAlignedRectEffect : public GrVertexEffect {
public:
    static GrEffect* Create() {
        GR_CREATE_STATIC_EFFECT(gAlignedRectEffect, GrAlignedRectEffect, ());
        gAlignedRectEffect->ref();
        return gAlignedRectEffect;
    }

    virtual ~GrAlignedRectEffect() {}

    static const char* Name() { return "AlignedRectEdge"; }

    virtual void getConstantColorComponents(GrColor* color,
                                            uint32_t* validFlags) const SK_OVERRIDE {
        *validFlags = 0;
    }

    virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE {
        return GrTBackendEffectFactory<GrAlignedRectEffect>::getInstance();
    }

    class GLEffect : public GrGLVertexEffect {
    public:
        GLEffect(const GrBackendEffectFactory& factory, const GrDrawEffect&)
        : INHERITED (factory) {}

        virtual void emitCode(GrGLFullShaderBuilder* builder,
                              const GrDrawEffect& drawEffect,
                              const GrEffectKey& key,
                              const char* outputColor,
                              const char* inputColor,
                              const TransformedCoordsArray&,
                              const TextureSamplerArray& samplers) SK_OVERRIDE {
            // setup the varying for the Axis aligned rect effect
            //      xy -> interpolated offset
            //      zw -> w/2+0.5, h/2+0.5
            const char *vsRectName, *fsRectName;
            builder->addVarying(kVec4f_GrSLType, "Rect", &vsRectName, &fsRectName);
            const SkString* attr0Name =
                builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[0]);
            builder->vsCodeAppendf("\t%s = %s;\n", vsRectName, attr0Name->c_str());

            // TODO: compute all these offsets, spans, and scales in the VS
            builder->fsCodeAppendf("\tfloat insetW = min(1.0, %s.z) - 0.5;\n", fsRectName);
            builder->fsCodeAppendf("\tfloat insetH = min(1.0, %s.w) - 0.5;\n", fsRectName);
            builder->fsCodeAppend("\tfloat outset = 0.5;\n");
            // For rects > 1 pixel wide and tall the span's are noops (i.e., 1.0). For rects
            // < 1 pixel wide or tall they serve to normalize the < 1 ramp to a 0 .. 1 range.
            builder->fsCodeAppend("\tfloat spanW = insetW + outset;\n");
            builder->fsCodeAppend("\tfloat spanH = insetH + outset;\n");
            // For rects < 1 pixel wide or tall, these scale factors are used to cap the maximum
            // value of coverage that is used. In other words it is the coverage that is
            // used in the interior of the rect after the ramp.
            builder->fsCodeAppend("\tfloat scaleW = min(1.0, 2.0*insetW/spanW);\n");
            builder->fsCodeAppend("\tfloat scaleH = min(1.0, 2.0*insetH/spanH);\n");

            // Compute the coverage for the rect's width
            builder->fsCodeAppendf(
                "\tfloat coverage = scaleW*clamp((%s.z-abs(%s.x))/spanW, 0.0, 1.0);\n", fsRectName,
                fsRectName);
            // Compute the coverage for the rect's height and merge with the width
            builder->fsCodeAppendf(
                "\tcoverage = coverage*scaleH*clamp((%s.w-abs(%s.y))/spanH, 0.0, 1.0);\n",
                fsRectName, fsRectName);


            builder->fsCodeAppendf("\t%s = %s;\n", outputColor,
                                   (GrGLSLExpr4(inputColor) * GrGLSLExpr1("coverage")).c_str());
        }

        static void GenKey(const GrDrawEffect&, const GrGLCaps&, GrEffectKeyBuilder*) {}

        virtual void setData(const GrGLProgramDataManager& pdman, const GrDrawEffect&) SK_OVERRIDE {}

    private:
        typedef GrGLVertexEffect INHERITED;
    };


private:
    GrAlignedRectEffect() : GrVertexEffect() {
        this->addVertexAttrib(kVec4f_GrSLType);
    }

    virtual bool onIsEqual(const GrEffect&) const SK_OVERRIDE { return true; }

    GR_DECLARE_EFFECT_TEST;

    typedef GrVertexEffect INHERITED;
};


GR_DEFINE_EFFECT_TEST(GrAlignedRectEffect);

GrEffect* GrAlignedRectEffect::TestCreate(SkRandom* random,
                                          GrContext* context,
                                          const GrDrawTargetCaps&,
                                          GrTexture* textures[]) {
    return GrAlignedRectEffect::Create();
}

///////////////////////////////////////////////////////////////////////////////
class GrGLRectEffect;

/**
 * The output of this effect is a modulation of the input color and coverage
 * for an arbitrarily oriented rect. The rect is specified as:
 *      Center of the rect
 *      Unit vector point down the height of the rect
 *      Half width + 0.5
 *      Half height + 0.5
 * The center and vector are stored in a vec4 varying ("RectEdge") with the
 * center in the xy components and the vector in the zw components.
 * The munged width and height are stored in a vec2 varying ("WidthHeight")
 * with the width in x and the height in y.
 */
class GrRectEffect : public GrVertexEffect {
public:
    static GrEffect* Create() {
        GR_CREATE_STATIC_EFFECT(gRectEffect, GrRectEffect, ());
        gRectEffect->ref();
        return gRectEffect;
    }

    virtual ~GrRectEffect() {}

    static const char* Name() { return "RectEdge"; }

    virtual void getConstantColorComponents(GrColor* color,
                                            uint32_t* validFlags) const SK_OVERRIDE {
        *validFlags = 0;
    }

    virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE {
        return GrTBackendEffectFactory<GrRectEffect>::getInstance();
    }

    class GLEffect : public GrGLVertexEffect {
    public:
        GLEffect(const GrBackendEffectFactory& factory, const GrDrawEffect&)
        : INHERITED (factory) {}

        virtual void emitCode(GrGLFullShaderBuilder* builder,
                              const GrDrawEffect& drawEffect,
                              const GrEffectKey& key,
                              const char* outputColor,
                              const char* inputColor,
                              const TransformedCoordsArray&,
                              const TextureSamplerArray& samplers) SK_OVERRIDE {
            // setup the varying for the center point and the unit vector
            // that points down the height of the rect
            const char *vsRectEdgeName, *fsRectEdgeName;
            builder->addVarying(kVec4f_GrSLType, "RectEdge",
                                &vsRectEdgeName, &fsRectEdgeName);
            const SkString* attr0Name =
                builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[0]);
            builder->vsCodeAppendf("\t%s = %s;\n", vsRectEdgeName, attr0Name->c_str());

            // setup the varying for width/2+.5 and height/2+.5
            const char *vsWidthHeightName, *fsWidthHeightName;
            builder->addVarying(kVec2f_GrSLType, "WidthHeight",
                                &vsWidthHeightName, &fsWidthHeightName);
            const SkString* attr1Name =
                builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[1]);
            builder->vsCodeAppendf("\t%s = %s;\n", vsWidthHeightName, attr1Name->c_str());

            // TODO: compute all these offsets, spans, and scales in the VS
            builder->fsCodeAppendf("\tfloat insetW = min(1.0, %s.x) - 0.5;\n", fsWidthHeightName);
            builder->fsCodeAppendf("\tfloat insetH = min(1.0, %s.y) - 0.5;\n", fsWidthHeightName);
            builder->fsCodeAppend("\tfloat outset = 0.5;\n");
            // For rects > 1 pixel wide and tall the span's are noops (i.e., 1.0). For rects
            // < 1 pixel wide or tall they serve to normalize the < 1 ramp to a 0 .. 1 range.
            builder->fsCodeAppend("\tfloat spanW = insetW + outset;\n");
            builder->fsCodeAppend("\tfloat spanH = insetH + outset;\n");
            // For rects < 1 pixel wide or tall, these scale factors are used to cap the maximum
            // value of coverage that is used. In other words it is the coverage that is
            // used in the interior of the rect after the ramp.
            builder->fsCodeAppend("\tfloat scaleW = min(1.0, 2.0*insetW/spanW);\n");
            builder->fsCodeAppend("\tfloat scaleH = min(1.0, 2.0*insetH/spanH);\n");

            // Compute the coverage for the rect's width
            builder->fsCodeAppendf("\tvec2 offset = %s.xy - %s.xy;\n",
                                   builder->fragmentPosition(), fsRectEdgeName);
            builder->fsCodeAppendf("\tfloat perpDot = abs(offset.x * %s.w - offset.y * %s.z);\n",
                                   fsRectEdgeName, fsRectEdgeName);
            builder->fsCodeAppendf(
                "\tfloat coverage = scaleW*clamp((%s.x-perpDot)/spanW, 0.0, 1.0);\n",
                fsWidthHeightName);

            // Compute the coverage for the rect's height and merge with the width
            builder->fsCodeAppendf("\tperpDot = abs(dot(offset, %s.zw));\n",
                                   fsRectEdgeName);
            builder->fsCodeAppendf(
                    "\tcoverage = coverage*scaleH*clamp((%s.y-perpDot)/spanH, 0.0, 1.0);\n",
                    fsWidthHeightName);


            builder->fsCodeAppendf("\t%s = %s;\n", outputColor,
                                   (GrGLSLExpr4(inputColor) * GrGLSLExpr1("coverage")).c_str());
        }

        static void GenKey(const GrDrawEffect&, const GrGLCaps&, GrEffectKeyBuilder*) {}

        virtual void setData(const GrGLProgramDataManager& pdman, const GrDrawEffect&) SK_OVERRIDE {}

    private:
        typedef GrGLVertexEffect INHERITED;
    };


private:
    GrRectEffect() : GrVertexEffect() {
        this->addVertexAttrib(kVec4f_GrSLType);
        this->addVertexAttrib(kVec2f_GrSLType);
        this->setWillReadFragmentPosition();
    }

    virtual bool onIsEqual(const GrEffect&) const SK_OVERRIDE { return true; }

    GR_DECLARE_EFFECT_TEST;

    typedef GrVertexEffect INHERITED;
};


GR_DEFINE_EFFECT_TEST(GrRectEffect);

GrEffect* GrRectEffect::TestCreate(SkRandom* random,
                                   GrContext* context,
                                   const GrDrawTargetCaps&,
                                   GrTexture* textures[]) {
    return GrRectEffect::Create();
}

///////////////////////////////////////////////////////////////////////////////

namespace {
extern const GrVertexAttrib gAARectAttribs[] = {
    {kVec2f_GrVertexAttribType,  0,                                 kPosition_GrVertexAttribBinding},
    {kVec4ub_GrVertexAttribType, sizeof(SkPoint),                   kColor_GrVertexAttribBinding},
    {kVec4ub_GrVertexAttribType, sizeof(SkPoint) + sizeof(SkColor), kCoverage_GrVertexAttribBinding},
};

// Should the coverage be multiplied into the color attrib or use a separate attrib.
enum CoverageAttribType {
    kUseColor_CoverageAttribType,
    kUseCoverage_CoverageAttribType,
};
}

static CoverageAttribType set_rect_attribs(GrDrawState* drawState) {
    if (drawState->canTweakAlphaForCoverage()) {
        drawState->setVertexAttribs<gAARectAttribs>(2);
        return kUseColor_CoverageAttribType;
    } else {
        drawState->setVertexAttribs<gAARectAttribs>(3);
        return kUseCoverage_CoverageAttribType;
    }
}

static void set_inset_fan(SkPoint* pts, size_t stride,
                          const SkRect& r, SkScalar dx, SkScalar dy) {
    pts->setRectFan(r.fLeft + dx, r.fTop + dy,
                    r.fRight - dx, r.fBottom - dy, stride);
}

void GrAARectRenderer::reset() {
    SkSafeSetNull(fAAFillRectIndexBuffer);
    SkSafeSetNull(fAAMiterStrokeRectIndexBuffer);
    SkSafeSetNull(fAABevelStrokeRectIndexBuffer);
}

static const uint16_t gFillAARectIdx[] = {
    0, 1, 5, 5, 4, 0,
    1, 2, 6, 6, 5, 1,
    2, 3, 7, 7, 6, 2,
    3, 0, 4, 4, 7, 3,
    4, 5, 6, 6, 7, 4,
};

static const int kIndicesPerAAFillRect = SK_ARRAY_COUNT(gFillAARectIdx);
static const int kVertsPerAAFillRect = 8;
static const int kNumAAFillRectsInIndexBuffer = 256;

GrIndexBuffer* GrAARectRenderer::aaFillRectIndexBuffer(GrGpu* gpu) {
    static const size_t kAAFillRectIndexBufferSize = kIndicesPerAAFillRect *
                                                     sizeof(uint16_t) *
                                                     kNumAAFillRectsInIndexBuffer;

    if (NULL == fAAFillRectIndexBuffer) {
        fAAFillRectIndexBuffer = gpu->createIndexBuffer(kAAFillRectIndexBufferSize, false);
        if (NULL != fAAFillRectIndexBuffer) {
            uint16_t* data = (uint16_t*) fAAFillRectIndexBuffer->map();
            bool useTempData = (NULL == data);
            if (useTempData) {
                data = SkNEW_ARRAY(uint16_t, kNumAAFillRectsInIndexBuffer * kIndicesPerAAFillRect);
            }
            for (int i = 0; i < kNumAAFillRectsInIndexBuffer; ++i) {
                // Each AA filled rect is drawn with 8 vertices and 10 triangles (8 around
                // the inner rect (for AA) and 2 for the inner rect.
                int baseIdx = i * kIndicesPerAAFillRect;
                uint16_t baseVert = (uint16_t)(i * kVertsPerAAFillRect);
                for (int j = 0; j < kIndicesPerAAFillRect; ++j) {
                    data[baseIdx+j] = baseVert + gFillAARectIdx[j];
                }
            }
            if (useTempData) {
                if (!fAAFillRectIndexBuffer->updateData(data, kAAFillRectIndexBufferSize)) {
                    SkFAIL("Can't get AA Fill Rect indices into buffer!");
                }
                SkDELETE_ARRAY(data);
            } else {
                fAAFillRectIndexBuffer->unmap();
            }
        }
    }

    return fAAFillRectIndexBuffer;
}

static const uint16_t gMiterStrokeAARectIdx[] = {
    0 + 0, 1 + 0, 5 + 0, 5 + 0, 4 + 0, 0 + 0,
    1 + 0, 2 + 0, 6 + 0, 6 + 0, 5 + 0, 1 + 0,
    2 + 0, 3 + 0, 7 + 0, 7 + 0, 6 + 0, 2 + 0,
    3 + 0, 0 + 0, 4 + 0, 4 + 0, 7 + 0, 3 + 0,

    0 + 4, 1 + 4, 5 + 4, 5 + 4, 4 + 4, 0 + 4,
    1 + 4, 2 + 4, 6 + 4, 6 + 4, 5 + 4, 1 + 4,
    2 + 4, 3 + 4, 7 + 4, 7 + 4, 6 + 4, 2 + 4,
    3 + 4, 0 + 4, 4 + 4, 4 + 4, 7 + 4, 3 + 4,

    0 + 8, 1 + 8, 5 + 8, 5 + 8, 4 + 8, 0 + 8,
    1 + 8, 2 + 8, 6 + 8, 6 + 8, 5 + 8, 1 + 8,
    2 + 8, 3 + 8, 7 + 8, 7 + 8, 6 + 8, 2 + 8,
    3 + 8, 0 + 8, 4 + 8, 4 + 8, 7 + 8, 3 + 8,
};

/**
 * As in miter-stroke, index = a + b, and a is the current index, b is the shift
 * from the first index. The index layout:
 * outer AA line: 0~3, 4~7
 * outer edge:    8~11, 12~15
 * inner edge:    16~19
 * inner AA line: 20~23
 * Following comes a bevel-stroke rect and its indices:
 *
 *           4                                 7
 *            *********************************
 *          *   ______________________________  *
 *         *  / 12                          15 \  *
 *        *  /                                  \  *
 *     0 *  |8     16_____________________19  11 |  * 3
 *       *  |       |                    |       |  *
 *       *  |       |  ****************  |       |  *
 *       *  |       |  * 20        23 *  |       |  *
 *       *  |       |  *              *  |       |  *
 *       *  |       |  * 21        22 *  |       |  *
 *       *  |       |  ****************  |       |  *
 *       *  |       |____________________|       |  *
 *     1 *  |9    17                      18   10|  * 2
 *        *  \                                  /  *
 *         *  \13 __________________________14/  *
 *          *                                   *
 *           **********************************
 *          5                                  6
 */
static const uint16_t gBevelStrokeAARectIdx[] = {
    // Draw outer AA, from outer AA line to outer edge, shift is 0.
    0 + 0, 1 + 0, 9 + 0, 9 + 0, 8 + 0, 0 + 0,
    1 + 0, 5 + 0, 13 + 0, 13 + 0, 9 + 0, 1 + 0,
    5 + 0, 6 + 0, 14 + 0, 14 + 0, 13 + 0, 5 + 0,
    6 + 0, 2 + 0, 10 + 0, 10 + 0, 14 + 0, 6 + 0,
    2 + 0, 3 + 0, 11 + 0, 11 + 0, 10 + 0, 2 + 0,
    3 + 0, 7 + 0, 15 + 0, 15 + 0, 11 + 0, 3 + 0,
    7 + 0, 4 + 0, 12 + 0, 12 + 0, 15 + 0, 7 + 0,
    4 + 0, 0 + 0, 8 + 0, 8 + 0, 12 + 0, 4 + 0,

    // Draw the stroke, from outer edge to inner edge, shift is 8.
    0 + 8, 1 + 8, 9 + 8, 9 + 8, 8 + 8, 0 + 8,
    1 + 8, 5 + 8, 9 + 8,
    5 + 8, 6 + 8, 10 + 8, 10 + 8, 9 + 8, 5 + 8,
    6 + 8, 2 + 8, 10 + 8,
    2 + 8, 3 + 8, 11 + 8, 11 + 8, 10 + 8, 2 + 8,
    3 + 8, 7 + 8, 11 + 8,
    7 + 8, 4 + 8, 8 + 8, 8 + 8, 11 + 8, 7 + 8,
    4 + 8, 0 + 8, 8 + 8,

    // Draw the inner AA, from inner edge to inner AA line, shift is 16.
    0 + 16, 1 + 16, 5 + 16, 5 + 16, 4 + 16, 0 + 16,
    1 + 16, 2 + 16, 6 + 16, 6 + 16, 5 + 16, 1 + 16,
    2 + 16, 3 + 16, 7 + 16, 7 + 16, 6 + 16, 2 + 16,
    3 + 16, 0 + 16, 4 + 16, 4 + 16, 7 + 16, 3 + 16,
};

int GrAARectRenderer::aaStrokeRectIndexCount(bool miterStroke) {
    return miterStroke ? SK_ARRAY_COUNT(gMiterStrokeAARectIdx) :
                         SK_ARRAY_COUNT(gBevelStrokeAARectIdx);
}

GrIndexBuffer* GrAARectRenderer::aaStrokeRectIndexBuffer(GrGpu* gpu, bool miterStroke) {
    if (miterStroke) {
        if (NULL == fAAMiterStrokeRectIndexBuffer) {
            fAAMiterStrokeRectIndexBuffer =
                gpu->createIndexBuffer(sizeof(gMiterStrokeAARectIdx), false);
            if (NULL != fAAMiterStrokeRectIndexBuffer) {
#ifdef SK_DEBUG
                bool updated =
#endif
                fAAMiterStrokeRectIndexBuffer->updateData(gMiterStrokeAARectIdx,
                                                          sizeof(gMiterStrokeAARectIdx));
                GR_DEBUGASSERT(updated);
            }
        }
        return fAAMiterStrokeRectIndexBuffer;
    } else {
        if (NULL == fAABevelStrokeRectIndexBuffer) {
            fAABevelStrokeRectIndexBuffer =
                gpu->createIndexBuffer(sizeof(gBevelStrokeAARectIdx), false);
            if (NULL != fAABevelStrokeRectIndexBuffer) {
#ifdef SK_DEBUG
                bool updated =
#endif
                fAABevelStrokeRectIndexBuffer->updateData(gBevelStrokeAARectIdx,
                                                          sizeof(gBevelStrokeAARectIdx));
                GR_DEBUGASSERT(updated);
            }
        }
        return fAABevelStrokeRectIndexBuffer;
    }
}

void GrAARectRenderer::geometryFillAARect(GrGpu* gpu,
                                          GrDrawTarget* target,
                                          const SkRect& rect,
                                          const SkMatrix& combinedMatrix,
                                          const SkRect& devRect) {
    GrDrawState* drawState = target->drawState();

    GrColor color = drawState->getColor();

    CoverageAttribType covAttribType = set_rect_attribs(drawState);
    if (kUseCoverage_CoverageAttribType == covAttribType && GrColorIsOpaque(color)) {
        drawState->setHint(GrDrawState::kVertexColorsAreOpaque_Hint, true);
    }

    GrDrawTarget::AutoReleaseGeometry geo(target, 8, 0);
    if (!geo.succeeded()) {
        GrPrintf("Failed to get space for vertices!\n");
        return;
    }

    GrIndexBuffer* indexBuffer = this->aaFillRectIndexBuffer(gpu);
    if (NULL == indexBuffer) {
        GrPrintf("Failed to create index buffer!\n");
        return;
    }

    intptr_t verts = reinterpret_cast<intptr_t>(geo.vertices());
    size_t vsize = drawState->getVertexSize();

    SkPoint* fan0Pos = reinterpret_cast<SkPoint*>(verts);
    SkPoint* fan1Pos = reinterpret_cast<SkPoint*>(verts + 4 * vsize);

    SkScalar inset = SkMinScalar(devRect.width(), SK_Scalar1);
    inset = SK_ScalarHalf * SkMinScalar(inset, devRect.height());

    if (combinedMatrix.rectStaysRect()) {
        // Temporarily #if'ed out. We don't want to pass in the devRect but
        // right now it is computed in GrContext::apply_aa_to_rect and we don't
        // want to throw away the work
#if 0
        SkRect devRect;
        combinedMatrix.mapRect(&devRect, rect);
#endif

        set_inset_fan(fan0Pos, vsize, devRect, -SK_ScalarHalf, -SK_ScalarHalf);
        set_inset_fan(fan1Pos, vsize, devRect, inset,  inset);
    } else {
        // compute transformed (1, 0) and (0, 1) vectors
        SkVector vec[2] = {
          { combinedMatrix[SkMatrix::kMScaleX], combinedMatrix[SkMatrix::kMSkewY] },
          { combinedMatrix[SkMatrix::kMSkewX],  combinedMatrix[SkMatrix::kMScaleY] }
        };

        vec[0].normalize();
        vec[0].scale(SK_ScalarHalf);
        vec[1].normalize();
        vec[1].scale(SK_ScalarHalf);

        // create the rotated rect
        fan0Pos->setRectFan(rect.fLeft, rect.fTop,
                            rect.fRight, rect.fBottom, vsize);
        combinedMatrix.mapPointsWithStride(fan0Pos, vsize, 4);

        // Now create the inset points and then outset the original
        // rotated points

        // TL
        *((SkPoint*)((intptr_t)fan1Pos + 0 * vsize)) =
            *((SkPoint*)((intptr_t)fan0Pos + 0 * vsize)) + vec[0] + vec[1];
        *((SkPoint*)((intptr_t)fan0Pos + 0 * vsize)) -= vec[0] + vec[1];
        // BL
        *((SkPoint*)((intptr_t)fan1Pos + 1 * vsize)) =
            *((SkPoint*)((intptr_t)fan0Pos + 1 * vsize)) + vec[0] - vec[1];
        *((SkPoint*)((intptr_t)fan0Pos + 1 * vsize)) -= vec[0] - vec[1];
        // BR
        *((SkPoint*)((intptr_t)fan1Pos + 2 * vsize)) =
            *((SkPoint*)((intptr_t)fan0Pos + 2 * vsize)) - vec[0] - vec[1];
        *((SkPoint*)((intptr_t)fan0Pos + 2 * vsize)) += vec[0] + vec[1];
        // TR
        *((SkPoint*)((intptr_t)fan1Pos + 3 * vsize)) =
            *((SkPoint*)((intptr_t)fan0Pos + 3 * vsize)) - vec[0] + vec[1];
        *((SkPoint*)((intptr_t)fan0Pos + 3 * vsize)) += vec[0] - vec[1];
    }

    // Make verts point to vertex color and then set all the color and coverage vertex attrs values.
    verts += sizeof(SkPoint);
    for (int i = 0; i < 4; ++i) {
        if (kUseCoverage_CoverageAttribType == covAttribType) {
            *reinterpret_cast<GrColor*>(verts + i * vsize) = color;
            *reinterpret_cast<GrColor*>(verts + i * vsize + sizeof(GrColor)) = 0;
        } else {
            *reinterpret_cast<GrColor*>(verts + i * vsize) = 0;
        }
    }

    int scale;
    if (inset < SK_ScalarHalf) {
        scale = SkScalarFloorToInt(512.0f * inset / (inset + SK_ScalarHalf));
        SkASSERT(scale >= 0 && scale <= 255);
    } else {
        scale = 0xff;
    }

    GrColor innerCoverage;
    if (kUseCoverage_CoverageAttribType == covAttribType) {
        innerCoverage = GrColorPackRGBA(scale, scale, scale, scale); 
    } else {
        innerCoverage = (0xff == scale) ? color : SkAlphaMulQ(color, scale);
    }
    verts += 4 * vsize;
    for (int i = 0; i < 4; ++i) {
        if (kUseCoverage_CoverageAttribType == covAttribType) {
            *reinterpret_cast<GrColor*>(verts + i * vsize) = color;
            *reinterpret_cast<GrColor*>(verts + i * vsize + sizeof(GrColor)) = innerCoverage;
        } else {
            *reinterpret_cast<GrColor*>(verts + i * vsize) = innerCoverage;
        }
    }

    target->setIndexSourceToBuffer(indexBuffer);
    target->drawIndexedInstances(kTriangles_GrPrimitiveType, 1,
                                 kVertsPerAAFillRect,
                                 kIndicesPerAAFillRect);
    target->resetIndexSource();
}

namespace {

// Rotated
struct RectVertex {
    SkPoint fPos;
    SkPoint fCenter;
    SkPoint fDir;
    SkPoint fWidthHeight;
};

// Rotated
extern const GrVertexAttrib gAARectVertexAttribs[] = {
    { kVec2f_GrVertexAttribType, 0,                 kPosition_GrVertexAttribBinding },
    { kVec4f_GrVertexAttribType, sizeof(SkPoint),   kEffect_GrVertexAttribBinding },
    { kVec2f_GrVertexAttribType, 3*sizeof(SkPoint), kEffect_GrVertexAttribBinding }
};

// Axis Aligned
struct AARectVertex {
    SkPoint fPos;
    SkPoint fOffset;
    SkPoint fWidthHeight;
};

// Axis Aligned
extern const GrVertexAttrib gAAAARectVertexAttribs[] = {
    { kVec2f_GrVertexAttribType, 0,                 kPosition_GrVertexAttribBinding },
    { kVec4f_GrVertexAttribType, sizeof(SkPoint),   kEffect_GrVertexAttribBinding },
};

};

void GrAARectRenderer::shaderFillAARect(GrGpu* gpu,
                                        GrDrawTarget* target,
                                        const SkRect& rect,
                                        const SkMatrix& combinedMatrix) {
    GrDrawState* drawState = target->drawState();

    SkPoint center = SkPoint::Make(rect.centerX(), rect.centerY());
    combinedMatrix.mapPoints(&center, 1);

    // compute transformed (0, 1) vector
    SkVector dir = { combinedMatrix[SkMatrix::kMSkewX], combinedMatrix[SkMatrix::kMScaleY] };
    dir.normalize();

    // compute transformed (width, 0) and (0, height) vectors
    SkVector vec[2] = {
      { combinedMatrix[SkMatrix::kMScaleX], combinedMatrix[SkMatrix::kMSkewY] },
      { combinedMatrix[SkMatrix::kMSkewX],  combinedMatrix[SkMatrix::kMScaleY] }
    };

    SkScalar newWidth = SkScalarHalf(rect.width() * vec[0].length()) + SK_ScalarHalf;
    SkScalar newHeight = SkScalarHalf(rect.height() * vec[1].length()) + SK_ScalarHalf;
    drawState->setVertexAttribs<gAARectVertexAttribs>(SK_ARRAY_COUNT(gAARectVertexAttribs));
    SkASSERT(sizeof(RectVertex) == drawState->getVertexSize());

    GrDrawTarget::AutoReleaseGeometry geo(target, 4, 0);
    if (!geo.succeeded()) {
        GrPrintf("Failed to get space for vertices!\n");
        return;
    }

    RectVertex* verts = reinterpret_cast<RectVertex*>(geo.vertices());

    GrEffect* effect = GrRectEffect::Create();
    static const int kRectAttrIndex = 1;
    static const int kWidthIndex = 2;
    drawState->addCoverageEffect(effect, kRectAttrIndex, kWidthIndex)->unref();

    for (int i = 0; i < 4; ++i) {
        verts[i].fCenter = center;
        verts[i].fDir = dir;
        verts[i].fWidthHeight.fX = newWidth;
        verts[i].fWidthHeight.fY = newHeight;
    }

    SkRect devRect;
    combinedMatrix.mapRect(&devRect, rect);

    SkRect devBounds = {
        devRect.fLeft   - SK_ScalarHalf,
        devRect.fTop    - SK_ScalarHalf,
        devRect.fRight  + SK_ScalarHalf,
        devRect.fBottom + SK_ScalarHalf
    };

    verts[0].fPos = SkPoint::Make(devBounds.fLeft, devBounds.fTop);
    verts[1].fPos = SkPoint::Make(devBounds.fLeft, devBounds.fBottom);
    verts[2].fPos = SkPoint::Make(devBounds.fRight, devBounds.fBottom);
    verts[3].fPos = SkPoint::Make(devBounds.fRight, devBounds.fTop);

    target->setIndexSourceToBuffer(gpu->getContext()->getQuadIndexBuffer());
    target->drawIndexedInstances(kTriangles_GrPrimitiveType, 1, 4, 6);
    target->resetIndexSource();
}

void GrAARectRenderer::shaderFillAlignedAARect(GrGpu* gpu,
                                               GrDrawTarget* target,
                                               const SkRect& rect,
                                               const SkMatrix& combinedMatrix) {
    GrDrawState* drawState = target->drawState();
    SkASSERT(combinedMatrix.rectStaysRect());

    drawState->setVertexAttribs<gAAAARectVertexAttribs>(SK_ARRAY_COUNT(gAAAARectVertexAttribs));
    SkASSERT(sizeof(AARectVertex) == drawState->getVertexSize());

    GrDrawTarget::AutoReleaseGeometry geo(target, 4, 0);
    if (!geo.succeeded()) {
        GrPrintf("Failed to get space for vertices!\n");
        return;
    }

    AARectVertex* verts = reinterpret_cast<AARectVertex*>(geo.vertices());

    GrEffect* effect = GrAlignedRectEffect::Create();
    static const int kOffsetIndex = 1;
    drawState->addCoverageEffect(effect, kOffsetIndex)->unref();

    SkRect devRect;
    combinedMatrix.mapRect(&devRect, rect);

    SkRect devBounds = {
        devRect.fLeft   - SK_ScalarHalf,
        devRect.fTop    - SK_ScalarHalf,
        devRect.fRight  + SK_ScalarHalf,
        devRect.fBottom + SK_ScalarHalf
    };

    SkPoint widthHeight = {
        SkScalarHalf(devRect.width()) + SK_ScalarHalf,
        SkScalarHalf(devRect.height()) + SK_ScalarHalf
    };

    verts[0].fPos = SkPoint::Make(devBounds.fLeft, devBounds.fTop);
    verts[0].fOffset = SkPoint::Make(-widthHeight.fX, -widthHeight.fY);
    verts[0].fWidthHeight = widthHeight;

    verts[1].fPos = SkPoint::Make(devBounds.fLeft, devBounds.fBottom);
    verts[1].fOffset = SkPoint::Make(-widthHeight.fX, widthHeight.fY);
    verts[1].fWidthHeight = widthHeight;

    verts[2].fPos = SkPoint::Make(devBounds.fRight, devBounds.fBottom);
    verts[2].fOffset = widthHeight;
    verts[2].fWidthHeight = widthHeight;

    verts[3].fPos = SkPoint::Make(devBounds.fRight, devBounds.fTop);
    verts[3].fOffset = SkPoint::Make(widthHeight.fX, -widthHeight.fY);
    verts[3].fWidthHeight = widthHeight;

    target->setIndexSourceToBuffer(gpu->getContext()->getQuadIndexBuffer());
    target->drawIndexedInstances(kTriangles_GrPrimitiveType, 1, 4, 6);
    target->resetIndexSource();
}

void GrAARectRenderer::strokeAARect(GrGpu* gpu,
                                    GrDrawTarget* target,
                                    const SkRect& rect,
                                    const SkMatrix& combinedMatrix,
                                    const SkRect& devRect,
                                    const SkStrokeRec& stroke) {
    SkVector devStrokeSize;
    SkScalar width = stroke.getWidth();
    if (width > 0) {
        devStrokeSize.set(width, width);
        combinedMatrix.mapVectors(&devStrokeSize, 1);
        devStrokeSize.setAbs(devStrokeSize);
    } else {
        devStrokeSize.set(SK_Scalar1, SK_Scalar1);
    }

    const SkScalar dx = devStrokeSize.fX;
    const SkScalar dy = devStrokeSize.fY;
    const SkScalar rx = SkScalarMul(dx, SK_ScalarHalf);
    const SkScalar ry = SkScalarMul(dy, SK_ScalarHalf);

    // Temporarily #if'ed out. We don't want to pass in the devRect but
    // right now it is computed in GrContext::apply_aa_to_rect and we don't
    // want to throw away the work
#if 0
    SkRect devRect;
    combinedMatrix.mapRect(&devRect, rect);
#endif

    SkScalar spare;
    {
        SkScalar w = devRect.width() - dx;
        SkScalar h = devRect.height() - dy;
        spare = SkTMin(w, h);
    }

    SkRect devOutside(devRect);
    devOutside.outset(rx, ry);

    bool miterStroke = true;
    // For hairlines, make bevel and round joins appear the same as mitered ones.
    // small miter limit means right angles show bevel...
    if ((width > 0) && (stroke.getJoin() != SkPaint::kMiter_Join ||
                        stroke.getMiter() < SK_ScalarSqrt2)) {
        miterStroke = false;
    }

    if (spare <= 0 && miterStroke) {
        this->fillAARect(gpu, target, devOutside, SkMatrix::I(), devOutside);
        return;
    }

    SkRect devInside(devRect);
    devInside.inset(rx, ry);

    SkRect devOutsideAssist(devRect);

    // For bevel-stroke, use 2 SkRect instances(devOutside and devOutsideAssist)
    // to draw the outer of the rect. Because there are 8 vertices on the outer
    // edge, while vertex number of inner edge is 4, the same as miter-stroke.
    if (!miterStroke) {
        devOutside.inset(0, ry);
        devOutsideAssist.outset(0, ry);
    }

    this->geometryStrokeAARect(gpu, target, devOutside, devOutsideAssist, devInside, miterStroke);
}

void GrAARectRenderer::geometryStrokeAARect(GrGpu* gpu,
                                            GrDrawTarget* target,
                                            const SkRect& devOutside,
                                            const SkRect& devOutsideAssist,
                                            const SkRect& devInside,
                                            bool miterStroke) {
    GrDrawState* drawState = target->drawState();

    CoverageAttribType covAttribType = set_rect_attribs(drawState);

    GrColor color = drawState->getColor();
    if (kUseCoverage_CoverageAttribType == covAttribType && GrColorIsOpaque(color)) {
        drawState->setHint(GrDrawState::kVertexColorsAreOpaque_Hint, true);
    }

    int innerVertexNum = 4;
    int outerVertexNum = miterStroke ? 4 : 8;
    int totalVertexNum = (outerVertexNum + innerVertexNum) * 2;

    GrDrawTarget::AutoReleaseGeometry geo(target, totalVertexNum, 0);
    if (!geo.succeeded()) {
        GrPrintf("Failed to get space for vertices!\n");
        return;
    }
    GrIndexBuffer* indexBuffer = this->aaStrokeRectIndexBuffer(gpu, miterStroke);
    if (NULL == indexBuffer) {
        GrPrintf("Failed to create index buffer!\n");
        return;
    }

    intptr_t verts = reinterpret_cast<intptr_t>(geo.vertices());
    size_t vsize = drawState->getVertexSize();

    // We create vertices for four nested rectangles. There are two ramps from 0 to full
    // coverage, one on the exterior of the stroke and the other on the interior.
    // The following pointers refer to the four rects, from outermost to innermost.
    SkPoint* fan0Pos = reinterpret_cast<SkPoint*>(verts);
    SkPoint* fan1Pos = reinterpret_cast<SkPoint*>(verts + outerVertexNum * vsize);
    SkPoint* fan2Pos = reinterpret_cast<SkPoint*>(verts + 2 * outerVertexNum * vsize);
    SkPoint* fan3Pos = reinterpret_cast<SkPoint*>(verts + (2 * outerVertexNum + innerVertexNum) * vsize);

#ifndef SK_IGNORE_THIN_STROKED_RECT_FIX
    // TODO: this only really works if the X & Y margins are the same all around
    // the rect
    SkScalar inset = SkMinScalar(SK_Scalar1, devOutside.fRight - devInside.fRight);
    inset = SkMinScalar(inset, devInside.fLeft - devOutside.fLeft);
    inset = SkMinScalar(inset, devInside.fTop - devOutside.fTop);
    if (miterStroke) {
        inset = SK_ScalarHalf * SkMinScalar(inset, devOutside.fBottom - devInside.fBottom);
    } else {
        inset = SK_ScalarHalf * SkMinScalar(inset, devOutsideAssist.fBottom - devInside.fBottom);
    }
    SkASSERT(inset >= 0);
#else
    SkScalar inset = SK_ScalarHalf;
#endif

    if (miterStroke) {
        // outermost
        set_inset_fan(fan0Pos, vsize, devOutside, -SK_ScalarHalf, -SK_ScalarHalf);
        // inner two
        set_inset_fan(fan1Pos, vsize, devOutside,  inset,  inset);
        set_inset_fan(fan2Pos, vsize, devInside,  -inset, -inset);
        // innermost
        set_inset_fan(fan3Pos, vsize, devInside,   SK_ScalarHalf,  SK_ScalarHalf);
    } else {
        SkPoint* fan0AssistPos = reinterpret_cast<SkPoint*>(verts + 4 * vsize);
        SkPoint* fan1AssistPos = reinterpret_cast<SkPoint*>(verts + (outerVertexNum + 4) * vsize);
        // outermost
        set_inset_fan(fan0Pos, vsize, devOutside, -SK_ScalarHalf, -SK_ScalarHalf);
        set_inset_fan(fan0AssistPos, vsize, devOutsideAssist, -SK_ScalarHalf, -SK_ScalarHalf);
        // outer one of the inner two
        set_inset_fan(fan1Pos, vsize, devOutside,  inset,  inset);
        set_inset_fan(fan1AssistPos, vsize, devOutsideAssist,  inset,  inset);
        // inner one of the inner two
        set_inset_fan(fan2Pos, vsize, devInside,  -inset, -inset);
        // innermost
        set_inset_fan(fan3Pos, vsize, devInside,   SK_ScalarHalf,  SK_ScalarHalf);
    }

    // Make verts point to vertex color and then set all the color and coverage vertex attrs values.
    // The outermost rect has 0 coverage
    verts += sizeof(SkPoint);
    for (int i = 0; i < outerVertexNum; ++i) {
        if (kUseCoverage_CoverageAttribType == covAttribType) {
            *reinterpret_cast<GrColor*>(verts + i * vsize) = color;
            *reinterpret_cast<GrColor*>(verts + i * vsize + sizeof(GrColor)) = 0;
        } else {
            *reinterpret_cast<GrColor*>(verts + i * vsize) = 0;
        }
    }

    // scale is the coverage for the the inner two rects.
    int scale;
    if (inset < SK_ScalarHalf) {
        scale = SkScalarFloorToInt(512.0f * inset / (inset + SK_ScalarHalf));
        SkASSERT(scale >= 0 && scale <= 255);
    } else {
        scale = 0xff;
    }

    verts += outerVertexNum * vsize;
    GrColor innerCoverage;
    if (kUseCoverage_CoverageAttribType == covAttribType) {
        innerCoverage = GrColorPackRGBA(scale, scale, scale, scale);
    } else {
        innerCoverage = (0xff == scale) ? color : SkAlphaMulQ(color, scale);
    }

    for (int i = 0; i < outerVertexNum + innerVertexNum; ++i) {
        if (kUseCoverage_CoverageAttribType == covAttribType) {
            *reinterpret_cast<GrColor*>(verts + i * vsize) = color;
            *reinterpret_cast<GrColor*>(verts + i * vsize + sizeof(GrColor)) = innerCoverage;
        } else {
            *reinterpret_cast<GrColor*>(verts + i * vsize) = innerCoverage;
        }
    }

    // The innermost rect has 0 coverage
    verts += (outerVertexNum + innerVertexNum) * vsize;
    for (int i = 0; i < innerVertexNum; ++i) {
        if (kUseCoverage_CoverageAttribType == covAttribType) {
            *reinterpret_cast<GrColor*>(verts + i * vsize) = color;
            *reinterpret_cast<GrColor*>(verts + i * vsize + sizeof(GrColor)) = 0;
        } else {
            *reinterpret_cast<GrColor*>(verts + i * vsize) = 0;
        }
    }

    target->setIndexSourceToBuffer(indexBuffer);
    target->drawIndexed(kTriangles_GrPrimitiveType, 0, 0,
                        totalVertexNum, aaStrokeRectIndexCount(miterStroke));
}

void GrAARectRenderer::fillAANestedRects(GrGpu* gpu,
                                         GrDrawTarget* target,
                                         const SkRect rects[2],
                                         const SkMatrix& combinedMatrix) {
    SkASSERT(combinedMatrix.rectStaysRect());
    SkASSERT(!rects[1].isEmpty());

    SkRect devOutside, devOutsideAssist, devInside;
    combinedMatrix.mapRect(&devOutside, rects[0]);
    // can't call mapRect for devInside since it calls sort
    combinedMatrix.mapPoints((SkPoint*)&devInside, (const SkPoint*)&rects[1], 2);

    if (devInside.isEmpty()) {
        this->fillAARect(gpu, target, devOutside, SkMatrix::I(), devOutside);
        return;
    }

    this->geometryStrokeAARect(gpu, target, devOutside, devOutsideAssist, devInside, true);
}