1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrAAConvexPathRenderer.h"
#include "GrContext.h"
#include "GrDrawState.h"
#include "GrPathUtils.h"
#include "SkString.h"
#include "SkTrace.h"
GrAAConvexPathRenderer::GrAAConvexPathRenderer() {
}
namespace {
struct Segment {
enum {
// These enum values are assumed in member functions below.
kLine = 0,
kQuad = 1,
} fType;
// line uses one pt, quad uses 2 pts
GrPoint fPts[2];
// normal to edge ending at each pt
GrVec fNorms[2];
// is the corner where the previous segment meets this segment
// sharp. If so, fMid is a normalized bisector facing outward.
GrVec fMid;
int countPoints() {
GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
return fType + 1;
}
const SkPoint& endPt() const {
GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
return fPts[fType];
};
const SkPoint& endNorm() const {
GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
return fNorms[fType];
};
};
typedef SkTArray<Segment, true> SegmentArray;
void center_of_mass(const SegmentArray& segments, SkPoint* c) {
GrScalar area = 0;
SkPoint center = {0, 0};
int count = segments.count();
SkPoint p0 = {0, 0};
if (count > 2) {
// We translate the polygon so that the first point is at the origin.
// This avoids some precision issues with small area polygons far away
// from the origin.
p0 = segments[0].endPt();
SkPoint pi;
SkPoint pj;
// the first and last interation of the below loop would compute
// zeros since the starting / ending point is (0,0). So instead we start
// at i=1 and make the last iteration i=count-2.
pj = segments[1].endPt() - p0;
for (int i = 1; i < count - 1; ++i) {
pi = pj;
const SkPoint pj = segments[i + 1].endPt() - p0;
GrScalar t = GrMul(pi.fX, pj.fY) - GrMul(pj.fX, pi.fY);
area += t;
center.fX += (pi.fX + pj.fX) * t;
center.fY += (pi.fY + pj.fY) * t;
}
}
// If the poly has no area then we instead return the average of
// its points.
if (SkScalarNearlyZero(area)) {
SkPoint avg;
avg.set(0, 0);
for (int i = 0; i < count; ++i) {
const SkPoint& pt = segments[i].endPt();
avg.fX += pt.fX;
avg.fY += pt.fY;
}
SkScalar denom = SK_Scalar1 / count;
avg.scale(denom);
*c = avg;
} else {
area *= 3;
area = GrScalarDiv(GR_Scalar1, area);
center.fX = GrScalarMul(center.fX, area);
center.fY = GrScalarMul(center.fY, area);
// undo the translate of p0 to the origin.
*c = center + p0;
}
GrAssert(!SkScalarIsNaN(c->fX) && !SkScalarIsNaN(c->fY));
}
void compute_vectors(SegmentArray* segments,
SkPoint* fanPt,
SkPath::Direction dir,
int* vCount,
int* iCount) {
center_of_mass(*segments, fanPt);
int count = segments->count();
// Make the normals point towards the outside
GrPoint::Side normSide;
if (dir == SkPath::kCCW_Direction) {
normSide = GrPoint::kRight_Side;
} else {
normSide = GrPoint::kLeft_Side;
}
*vCount = 0;
*iCount = 0;
// compute normals at all points
for (int a = 0; a < count; ++a) {
const Segment& sega = (*segments)[a];
int b = (a + 1) % count;
Segment& segb = (*segments)[b];
const GrPoint* prevPt = &sega.endPt();
int n = segb.countPoints();
for (int p = 0; p < n; ++p) {
segb.fNorms[p] = segb.fPts[p] - *prevPt;
segb.fNorms[p].normalize();
segb.fNorms[p].setOrthog(segb.fNorms[p], normSide);
prevPt = &segb.fPts[p];
}
if (Segment::kLine == segb.fType) {
*vCount += 5;
*iCount += 9;
} else {
*vCount += 6;
*iCount += 12;
}
}
// compute mid-vectors where segments meet. TODO: Detect shallow corners
// and leave out the wedges and close gaps by stitching segments together.
for (int a = 0; a < count; ++a) {
const Segment& sega = (*segments)[a];
int b = (a + 1) % count;
Segment& segb = (*segments)[b];
segb.fMid = segb.fNorms[0] + sega.endNorm();
segb.fMid.normalize();
// corner wedges
*vCount += 4;
*iCount += 6;
}
}
struct DegenerateTestData {
DegenerateTestData() { fStage = kInitial; }
bool isDegenerate() const { return kNonDegenerate != fStage; }
enum {
kInitial,
kPoint,
kLine,
kNonDegenerate
} fStage;
GrPoint fFirstPoint;
GrVec fLineNormal;
GrScalar fLineC;
};
void update_degenerate_test(DegenerateTestData* data, const GrPoint& pt) {
static const SkScalar TOL = (SK_Scalar1 / 16);
static const SkScalar TOL_SQD = SkScalarMul(TOL, TOL);
switch (data->fStage) {
case DegenerateTestData::kInitial:
data->fFirstPoint = pt;
data->fStage = DegenerateTestData::kPoint;
break;
case DegenerateTestData::kPoint:
if (pt.distanceToSqd(data->fFirstPoint) > TOL_SQD) {
data->fLineNormal = pt - data->fFirstPoint;
data->fLineNormal.normalize();
data->fLineNormal.setOrthog(data->fLineNormal);
data->fLineC = -data->fLineNormal.dot(data->fFirstPoint);
data->fStage = DegenerateTestData::kLine;
}
break;
case DegenerateTestData::kLine:
if (SkScalarAbs(data->fLineNormal.dot(pt) + data->fLineC) > TOL) {
data->fStage = DegenerateTestData::kNonDegenerate;
}
case DegenerateTestData::kNonDegenerate:
break;
default:
GrCrash("Unexpected degenerate test stage.");
}
}
inline SkPath::Direction get_direction(const SkPath& path, const GrMatrix& m) {
SkPath::Direction dir;
GR_DEBUGCODE(bool succeeded = )
path.cheapComputeDirection(&dir);
GrAssert(succeeded);
// check whether m reverses the orientation
GrAssert(!m.hasPerspective());
GrScalar det2x2 =
GrMul(m.get(SkMatrix::kMScaleX), m.get(SkMatrix::kMScaleY)) -
GrMul(m.get(SkMatrix::kMSkewX), m.get(SkMatrix::kMSkewY));
if (det2x2 < 0) {
GR_STATIC_ASSERT(0 == SkPath::kCW_Direction ||
1 == SkPath::kCW_Direction);
GR_STATIC_ASSERT(0 == SkPath::kCCW_Direction ||
1 == SkPath::kCCW_Direction);
dir = static_cast<SkPath::Direction>(dir ^ 0x1);
}
return dir;
}
bool get_segments(const SkPath& path,
const GrMatrix& m,
SegmentArray* segments,
SkPoint* fanPt,
int* vCount,
int* iCount) {
SkPath::Iter iter(path, true);
// This renderer overemphasises very thin path regions. We use the distance
// to the path from the sample to compute coverage. Every pixel intersected
// by the path will be hit and the maximum distance is sqrt(2)/2. We don't
// notice that the sample may be close to a very thin area of the path and
// thus should be very light. This is particularly egregious for degenerate
// line paths. We detect paths that are very close to a line (zero area) and
// draw nothing.
DegenerateTestData degenerateData;
for (;;) {
GrPoint pts[4];
GrPathCmd cmd = (GrPathCmd)iter.next(pts);
switch (cmd) {
case kMove_PathCmd:
m.mapPoints(pts, 1);
update_degenerate_test(°enerateData, pts[0]);
break;
case kLine_PathCmd: {
m.mapPoints(pts + 1, 1);
update_degenerate_test(°enerateData, pts[1]);
segments->push_back();
segments->back().fType = Segment::kLine;
segments->back().fPts[0] = pts[1];
break;
}
case kQuadratic_PathCmd:
m.mapPoints(pts + 1, 2);
update_degenerate_test(°enerateData, pts[1]);
update_degenerate_test(°enerateData, pts[2]);
segments->push_back();
segments->back().fType = Segment::kQuad;
segments->back().fPts[0] = pts[1];
segments->back().fPts[1] = pts[2];
break;
case kCubic_PathCmd: {
m.mapPoints(pts, 4);
update_degenerate_test(°enerateData, pts[1]);
update_degenerate_test(°enerateData, pts[2]);
update_degenerate_test(°enerateData, pts[3]);
// unlike quads and lines, the pts[0] will also be read (in
// convertCubicToQuads).
SkSTArray<15, SkPoint, true> quads;
GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, &quads);
int count = quads.count();
for (int q = 0; q < count; q += 3) {
segments->push_back();
segments->back().fType = Segment::kQuad;
segments->back().fPts[0] = quads[q + 1];
segments->back().fPts[1] = quads[q + 2];
}
break;
};
case kEnd_PathCmd:
if (degenerateData.isDegenerate()) {
return false;
} else {
SkPath::Direction dir = get_direction(path, m);
compute_vectors(segments, fanPt, dir, vCount, iCount);
return true;
}
default:
break;
}
}
}
struct QuadVertex {
GrPoint fPos;
GrPoint fUV;
GrScalar fD0;
GrScalar fD1;
};
void create_vertices(const SegmentArray& segments,
const SkPoint& fanPt,
QuadVertex* verts,
uint16_t* idxs) {
int v = 0;
int i = 0;
int count = segments.count();
for (int a = 0; a < count; ++a) {
const Segment& sega = segments[a];
int b = (a + 1) % count;
const Segment& segb = segments[b];
// FIXME: These tris are inset in the 1 unit arc around the corner
verts[v + 0].fPos = sega.endPt();
verts[v + 1].fPos = verts[v + 0].fPos + sega.endNorm();
verts[v + 2].fPos = verts[v + 0].fPos + segb.fMid;
verts[v + 3].fPos = verts[v + 0].fPos + segb.fNorms[0];
verts[v + 0].fUV.set(0,0);
verts[v + 1].fUV.set(0,-SK_Scalar1);
verts[v + 2].fUV.set(0,-SK_Scalar1);
verts[v + 3].fUV.set(0,-SK_Scalar1);
verts[v + 0].fD0 = verts[v + 0].fD1 = -SK_Scalar1;
verts[v + 1].fD0 = verts[v + 1].fD1 = -SK_Scalar1;
verts[v + 2].fD0 = verts[v + 2].fD1 = -SK_Scalar1;
verts[v + 3].fD0 = verts[v + 3].fD1 = -SK_Scalar1;
idxs[i + 0] = v + 0;
idxs[i + 1] = v + 2;
idxs[i + 2] = v + 1;
idxs[i + 3] = v + 0;
idxs[i + 4] = v + 3;
idxs[i + 5] = v + 2;
v += 4;
i += 6;
if (Segment::kLine == segb.fType) {
verts[v + 0].fPos = fanPt;
verts[v + 1].fPos = sega.endPt();
verts[v + 2].fPos = segb.fPts[0];
verts[v + 3].fPos = verts[v + 1].fPos + segb.fNorms[0];
verts[v + 4].fPos = verts[v + 2].fPos + segb.fNorms[0];
// we draw the line edge as a degenerate quad (u is 0, v is the
// signed distance to the edge)
GrScalar dist = fanPt.distanceToLineBetween(verts[v + 1].fPos,
verts[v + 2].fPos);
verts[v + 0].fUV.set(0, dist);
verts[v + 1].fUV.set(0, 0);
verts[v + 2].fUV.set(0, 0);
verts[v + 3].fUV.set(0, -SK_Scalar1);
verts[v + 4].fUV.set(0, -SK_Scalar1);
verts[v + 0].fD0 = verts[v + 0].fD1 = -SK_Scalar1;
verts[v + 1].fD0 = verts[v + 1].fD1 = -SK_Scalar1;
verts[v + 2].fD0 = verts[v + 2].fD1 = -SK_Scalar1;
verts[v + 3].fD0 = verts[v + 3].fD1 = -SK_Scalar1;
verts[v + 4].fD0 = verts[v + 4].fD1 = -SK_Scalar1;
idxs[i + 0] = v + 0;
idxs[i + 1] = v + 2;
idxs[i + 2] = v + 1;
idxs[i + 3] = v + 3;
idxs[i + 4] = v + 1;
idxs[i + 5] = v + 2;
idxs[i + 6] = v + 4;
idxs[i + 7] = v + 3;
idxs[i + 8] = v + 2;
v += 5;
i += 9;
} else {
GrPoint qpts[] = {sega.endPt(), segb.fPts[0], segb.fPts[1]};
GrVec midVec = segb.fNorms[0] + segb.fNorms[1];
midVec.normalize();
verts[v + 0].fPos = fanPt;
verts[v + 1].fPos = qpts[0];
verts[v + 2].fPos = qpts[2];
verts[v + 3].fPos = qpts[0] + segb.fNorms[0];
verts[v + 4].fPos = qpts[2] + segb.fNorms[1];
verts[v + 5].fPos = qpts[1] + midVec;
GrScalar c = segb.fNorms[0].dot(qpts[0]);
verts[v + 0].fD0 = -segb.fNorms[0].dot(fanPt) + c;
verts[v + 1].fD0 = 0.f;
verts[v + 2].fD0 = -segb.fNorms[0].dot(qpts[2]) + c;
verts[v + 3].fD0 = -GR_ScalarMax/100;
verts[v + 4].fD0 = -GR_ScalarMax/100;
verts[v + 5].fD0 = -GR_ScalarMax/100;
c = segb.fNorms[1].dot(qpts[2]);
verts[v + 0].fD1 = -segb.fNorms[1].dot(fanPt) + c;
verts[v + 1].fD1 = -segb.fNorms[1].dot(qpts[0]) + c;
verts[v + 2].fD1 = 0.f;
verts[v + 3].fD1 = -GR_ScalarMax/100;
verts[v + 4].fD1 = -GR_ScalarMax/100;
verts[v + 5].fD1 = -GR_ScalarMax/100;
GrPathUtils::QuadUVMatrix toUV(qpts);
toUV.apply<6, sizeof(QuadVertex), sizeof(GrPoint)>(verts + v);
idxs[i + 0] = v + 3;
idxs[i + 1] = v + 1;
idxs[i + 2] = v + 2;
idxs[i + 3] = v + 4;
idxs[i + 4] = v + 3;
idxs[i + 5] = v + 2;
idxs[i + 6] = v + 5;
idxs[i + 7] = v + 3;
idxs[i + 8] = v + 4;
idxs[i + 9] = v + 0;
idxs[i + 10] = v + 2;
idxs[i + 11] = v + 1;
v += 6;
i += 12;
}
}
}
}
bool GrAAConvexPathRenderer::canDrawPath(const SkPath& path,
GrPathFill fill,
const GrDrawTarget* target,
bool antiAlias) const {
if (!target->getCaps().fShaderDerivativeSupport || !antiAlias ||
kHairLine_PathFill == fill || GrIsFillInverted(fill) ||
!path.isConvex()) {
return false;
} else {
return true;
}
}
bool GrAAConvexPathRenderer::onDrawPath(const SkPath& origPath,
GrPathFill fill,
const GrVec* translate,
GrDrawTarget* target,
GrDrawState::StageMask stageMask,
bool antiAlias) {
const SkPath* path = &origPath;
if (path->isEmpty()) {
return true;
}
GrDrawTarget::AutoStateRestore asr(target,
GrDrawTarget::kPreserve_ASRInit);
GrDrawState* drawState = target->drawState();
GrMatrix vm = drawState->getViewMatrix();
if (NULL != translate) {
vm.postTranslate(translate->fX, translate->fY);
}
GrMatrix ivm;
if (vm.invert(&ivm)) {
drawState->preConcatSamplerMatrices(stageMask, ivm);
}
drawState->viewMatrix()->reset();
GrVertexLayout layout = 0;
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
if ((1 << s) & stageMask) {
layout |= GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(s);
}
}
layout |= GrDrawTarget::kEdge_VertexLayoutBit;
// We use the fact that SkPath::transform path does subdivision based on
// perspective. Otherwise, we apply the view matrix when copying to the
// segment representation.
SkPath tmpPath;
if (vm.hasPerspective()) {
origPath.transform(vm, &tmpPath);
path = &tmpPath;
vm.reset();
}
QuadVertex *verts;
uint16_t* idxs;
int vCount;
int iCount;
enum {
kPreallocSegmentCnt = 512 / sizeof(Segment),
};
SkSTArray<kPreallocSegmentCnt, Segment, true> segments;
SkPoint fanPt;
if (!get_segments(*path, vm, &segments, &fanPt, &vCount, &iCount)) {
return false;
}
GrDrawTarget::AutoReleaseGeometry arg(target, layout, vCount, iCount);
if (!arg.succeeded()) {
return false;
}
verts = reinterpret_cast<QuadVertex*>(arg.vertices());
idxs = reinterpret_cast<uint16_t*>(arg.indices());
create_vertices(segments, fanPt, verts, idxs);
drawState->setVertexEdgeType(GrDrawState::kQuad_EdgeType);
target->drawIndexed(kTriangles_PrimitiveType,
0, // start vertex
0, // start index
vCount,
iCount);
return true;
}
|