1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
|
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkShadowTessellator.h"
#include "SkGeometry.h"
#if SK_SUPPORT_GPU
#include "GrPathUtils.h"
static bool compute_normal(const SkPoint& p0, const SkPoint& p1, SkScalar radius, SkScalar dir,
SkVector* newNormal) {
SkVector normal;
// compute perpendicular
normal.fX = p0.fY - p1.fY;
normal.fY = p1.fX - p0.fX;
if (!normal.normalize()) {
return false;
}
normal *= radius*dir;
*newNormal = normal;
return true;
}
static void compute_radial_steps(const SkVector& v1, const SkVector& v2, SkScalar r,
SkScalar* rotSin, SkScalar* rotCos, int* n) {
const SkScalar kRecipPixelsPerArcSegment = 0.25f;
SkScalar rCos = v1.dot(v2);
SkScalar rSin = v1.cross(v2);
SkScalar theta = SkScalarATan2(rSin, rCos);
SkScalar steps = r*theta*kRecipPixelsPerArcSegment;
SkScalar dTheta = theta / steps;
*rotSin = SkScalarSinCos(dTheta, rotCos);
*n = SkScalarFloorToInt(steps);
}
SkAmbientShadowTessellator::SkAmbientShadowTessellator(const SkMatrix& viewMatrix,
const SkPath& path,
SkScalar radius,
GrColor umbraColor,
GrColor penumbraColor,
bool transparent)
: fRadius(radius)
, fUmbraColor(umbraColor)
, fPenumbraColor(penumbraColor)
, fTransparent(transparent)
, fPrevInnerIndex(-1) {
// Outer ring: 3*numPts
// Middle ring: numPts
fPositions.setReserve(4 * path.countPoints());
fColors.setReserve(4 * path.countPoints());
// Outer ring: 12*numPts
// Middle ring: 0
fIndices.setReserve(12 * path.countPoints());
fInitPoints.setReserve(3);
// walk around the path, tessellate and generate outer ring
// if original path is transparent, will accumulate sum of points for centroid
SkPath::Iter iter(path, true);
SkPoint pts[4];
SkPath::Verb verb;
if (fTransparent) {
*fPositions.push() = SkPoint::Make(0, 0);
*fColors.push() = umbraColor;
fCentroidCount = 0;
}
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kLine_Verb:
this->handleLine(viewMatrix, pts[1]);
break;
case SkPath::kQuad_Verb:
this->handleQuad(viewMatrix, pts);
break;
case SkPath::kCubic_Verb:
this->handleCubic(viewMatrix, pts);
break;
case SkPath::kConic_Verb:
this->handleConic(viewMatrix, pts, iter.conicWeight());
break;
case SkPath::kMove_Verb:
case SkPath::kClose_Verb:
case SkPath::kDone_Verb:
break;
}
}
SkVector normal;
if (compute_normal(fPositions[fPrevInnerIndex], fPositions[fFirstVertex], fRadius, fDirection,
&normal)) {
this->addArc(normal);
// close out previous arc
*fPositions.push() = fPositions[fPrevInnerIndex] + normal;
*fColors.push() = fPenumbraColor;
*fIndices.push() = fPrevInnerIndex;
*fIndices.push() = fPositions.count() - 2;
*fIndices.push() = fPositions.count() - 1;
// add final edge
*fPositions.push() = fPositions[fFirstVertex] + normal;
*fColors.push() = fPenumbraColor;
*fIndices.push() = fPrevInnerIndex;
*fIndices.push() = fPositions.count() - 2;
*fIndices.push() = fFirstVertex;
*fIndices.push() = fPositions.count() - 2;
*fIndices.push() = fPositions.count() - 1;
*fIndices.push() = fFirstVertex;
}
// finalize centroid
if (fTransparent) {
fPositions[0] *= SkScalarFastInvert(fCentroidCount);
*fIndices.push() = 0;
*fIndices.push() = fPrevInnerIndex;
*fIndices.push() = fFirstVertex;
}
// final fan
if (fPositions.count() >= 3) {
fPrevInnerIndex = fFirstVertex;
fPrevNormal = normal;
this->addArc(fFirstNormal);
*fIndices.push() = fFirstVertex;
*fIndices.push() = fPositions.count() - 1;
*fIndices.push() = fFirstVertex + 1;
}
}
// tesselation tolerance values, in device space pixels
static const SkScalar kQuadTolerance = 0.2f;
static const SkScalar kCubicTolerance = 0.2f;
static const SkScalar kConicTolerance = 0.5f;
void SkAmbientShadowTessellator::handleLine(const SkPoint& p) {
if (fInitPoints.count() < 2) {
*fInitPoints.push() = p;
return;
}
if (fInitPoints.count() == 2) {
// determine if cw or ccw
SkVector v0 = fInitPoints[1] - fInitPoints[0];
SkVector v1 = p - fInitPoints[0];
SkScalar perpDot = v0.fX*v1.fY - v0.fY*v1.fX;
if (SkScalarNearlyZero(perpDot)) {
// nearly parallel, just treat as straight line and continue
fInitPoints[1] = p;
return;
}
// if perpDot > 0, winding is ccw
fDirection = (perpDot > 0) ? -1 : 1;
// add first quad
if (!compute_normal(fInitPoints[0], fInitPoints[1], fRadius, fDirection,
&fFirstNormal)) {
// first two points are incident, make the third point the second and continue
fInitPoints[1] = p;
return;
}
fFirstVertex = fPositions.count();
fPrevNormal = fFirstNormal;
fPrevInnerIndex = fFirstVertex;
*fPositions.push() = fInitPoints[0];
*fColors.push() = fUmbraColor;
*fPositions.push() = fInitPoints[0] + fFirstNormal;
*fColors.push() = fPenumbraColor;
if (fTransparent) {
fPositions[0] += fInitPoints[0];
fCentroidCount = 1;
}
this->addEdge(fInitPoints[1], fFirstNormal);
// to ensure we skip this block next time
*fInitPoints.push() = p;
}
SkVector normal;
if (compute_normal(fPositions[fPrevInnerIndex], p, fRadius, fDirection, &normal)) {
this->addArc(normal);
this->addEdge(p, normal);
}
}
void SkAmbientShadowTessellator::handleLine(const SkMatrix& m, SkPoint p) {
m.mapPoints(&p, 1);
this->handleLine(p);
}
void SkAmbientShadowTessellator::handleQuad(const SkPoint pts[3]) {
int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance);
fPointBuffer.setReserve(maxCount);
SkPoint* target = fPointBuffer.begin();
int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2],
kQuadTolerance, &target, maxCount);
fPointBuffer.setCount(count);
for (int i = 0; i < count; i++) {
this->handleLine(fPointBuffer[i]);
}
}
void SkAmbientShadowTessellator::handleQuad(const SkMatrix& m, SkPoint pts[3]) {
m.mapPoints(pts, 3);
this->handleQuad(pts);
}
void SkAmbientShadowTessellator::handleCubic(const SkMatrix& m, SkPoint pts[4]) {
m.mapPoints(pts, 4);
int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance);
fPointBuffer.setReserve(maxCount);
SkPoint* target = fPointBuffer.begin();
int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3],
kCubicTolerance, &target, maxCount);
fPointBuffer.setCount(count);
for (int i = 0; i < count; i++) {
this->handleLine(fPointBuffer[i]);
}
}
void SkAmbientShadowTessellator::handleConic(const SkMatrix& m, SkPoint pts[3], SkScalar w) {
m.mapPoints(pts, 3);
SkAutoConicToQuads quadder;
const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance);
SkPoint lastPoint = *(quads++);
int count = quadder.countQuads();
for (int i = 0; i < count; ++i) {
SkPoint quadPts[3];
quadPts[0] = lastPoint;
quadPts[1] = quads[0];
quadPts[2] = i == count - 1 ? pts[2] : quads[1];
this->handleQuad(quadPts);
lastPoint = quadPts[2];
quads += 2;
}
}
void SkAmbientShadowTessellator::addArc(const SkVector& nextNormal) {
// fill in fan from previous quad
SkScalar rotSin, rotCos;
int numSteps;
compute_radial_steps(fPrevNormal, nextNormal, fRadius, &rotSin, &rotCos, &numSteps);
SkVector prevNormal = fPrevNormal;
for (int i = 0; i < numSteps; ++i) {
SkVector nextNormal;
nextNormal.fX = prevNormal.fX*rotCos - prevNormal.fY*rotSin;
nextNormal.fY = prevNormal.fY*rotCos + prevNormal.fX*rotSin;
*fPositions.push() = fPositions[fPrevInnerIndex] + nextNormal;
*fColors.push() = fPenumbraColor;
*fIndices.push() = fPrevInnerIndex;
*fIndices.push() = fPositions.count() - 2;
*fIndices.push() = fPositions.count() - 1;
prevNormal = nextNormal;
}
}
void SkAmbientShadowTessellator::finishArcAndAddEdge(const SkPoint& nextPoint,
const SkVector& nextNormal) {
// close out previous arc
*fPositions.push() = fPositions[fPrevInnerIndex] + nextNormal;
*fColors.push() = fPenumbraColor;
*fIndices.push() = fPrevInnerIndex;
*fIndices.push() = fPositions.count() - 2;
*fIndices.push() = fPositions.count() - 1;
this->addEdge(nextPoint, nextNormal);
}
void SkAmbientShadowTessellator::addEdge(const SkPoint& nextPoint, const SkVector& nextNormal) {
// add next quad
*fPositions.push() = nextPoint;
*fColors.push() = fUmbraColor;
*fPositions.push() = nextPoint + nextNormal;
*fColors.push() = fPenumbraColor;
*fIndices.push() = fPrevInnerIndex;
*fIndices.push() = fPositions.count() - 3;
*fIndices.push() = fPositions.count() - 2;
*fIndices.push() = fPositions.count() - 3;
*fIndices.push() = fPositions.count() - 1;
*fIndices.push() = fPositions.count() - 2;
// if transparent, add point to first one in array and add to center fan
if (fTransparent) {
fPositions[0] += nextPoint;
++fCentroidCount;
*fIndices.push() = 0;
*fIndices.push() = fPrevInnerIndex;
*fIndices.push() = fPositions.count() - 2;
}
fPrevInnerIndex = fPositions.count() - 2;
fPrevNormal = nextNormal;
}
#endif
|