aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/effects/gradients/SkTwoPointConicalGradient.cpp
blob: 7cb094391a60a46a1b3c6bae4f7610666216385d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764

/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkTwoPointConicalGradient.h"

static int valid_divide(float numer, float denom, float* ratio) {
    SkASSERT(ratio);
    if (0 == denom) {
        return 0;
    }
    *ratio = numer / denom;
    return 1;
}

// Return the number of distinct real roots, and write them into roots[] in
// ascending order
static int find_quad_roots(float A, float B, float C, float roots[2]) {
    SkASSERT(roots);

    if (A == 0) {
        return valid_divide(-C, B, roots);
    }

    float R = B*B - 4*A*C;
    if (R < 0) {
        return 0;
    }
    R = sk_float_sqrt(R);

#if 1
    float Q = B;
    if (Q < 0) {
        Q -= R;
    } else {
        Q += R;
    }
#else
    // on 10.6 this was much slower than the above branch :(
    float Q = B + copysignf(R, B);
#endif
    Q *= -0.5f;
    if (0 == Q) {
        roots[0] = 0;
        return 1;
    }

    float r0 = Q / A;
    float r1 = C / Q;
    roots[0] = r0 < r1 ? r0 : r1;
    roots[1] = r0 > r1 ? r0 : r1;
    return 2;
}

static float lerp(float x, float dx, float t) {
    return x + t * dx;
}

static float sqr(float x) { return x * x; }

void TwoPtRadial::init(const SkPoint& center0, SkScalar rad0,
                       const SkPoint& center1, SkScalar rad1) {
    fCenterX = SkScalarToFloat(center0.fX);
    fCenterY = SkScalarToFloat(center0.fY);
    fDCenterX = SkScalarToFloat(center1.fX) - fCenterX;
    fDCenterY = SkScalarToFloat(center1.fY) - fCenterY;
    fRadius = SkScalarToFloat(rad0);
    fDRadius = SkScalarToFloat(rad1) - fRadius;

    fA = sqr(fDCenterX) + sqr(fDCenterY) - sqr(fDRadius);
    fRadius2 = sqr(fRadius);
    fRDR = fRadius * fDRadius;

    fConeFillsPlane = rad0 != rad1 && SkMaxScalar(rad0, rad1) > SkPoint::Distance(center0, center1);
}

void TwoPtRadial::setup(SkScalar fx, SkScalar fy, SkScalar dfx, SkScalar dfy) {
    fRelX = SkScalarToFloat(fx) - fCenterX;
    fRelY = SkScalarToFloat(fy) - fCenterY;
    fIncX = SkScalarToFloat(dfx);
    fIncY = SkScalarToFloat(dfy);
    fB = -2 * (fDCenterX * fRelX + fDCenterY * fRelY + fRDR);
    fDB = -2 * (fDCenterX * fIncX + fDCenterY * fIncY);
}

SkFixed TwoPtRadial::nextT() {
    float roots[2];

    float C = sqr(fRelX) + sqr(fRelY) - fRadius2;
    int countRoots = find_quad_roots(fA, fB, C, roots);

    fRelX += fIncX;
    fRelY += fIncY;
    fB += fDB;

    if (0 == countRoots) {
        return kDontDrawT;
    }

    // Prefer the bigger t value if both give a radius(t) > 0
    // find_quad_roots returns the values sorted, so we start with the last
    float t = roots[countRoots - 1];
    float r = lerp(fRadius, fDRadius, t);
    if (r <= 0) {
        t = roots[0];   // might be the same as roots[countRoots-1]
        r = lerp(fRadius, fDRadius, t);
        if (r <= 0) {
            return kDontDrawT;
        }
    }
    return SkFloatToFixed(t);
}

typedef void (*TwoPointConicalProc)(TwoPtRadial* rec, SkPMColor* dstC,
                                    const SkPMColor* cache, int toggle, int count);

static void twopoint_clamp(TwoPtRadial* rec, SkPMColor* SK_RESTRICT dstC,
                           const SkPMColor* SK_RESTRICT cache, int toggle,
                           int count) {
    for (; count > 0; --count) {
        SkFixed t = rec->nextT();
        if (TwoPtRadial::DontDrawT(t)) {
            *dstC++ = 0;
        } else {
            SkFixed index = SkClampMax(t, 0xFFFF);
            SkASSERT(index <= 0xFFFF);
            *dstC++ = cache[toggle +
                            (index >> SkGradientShaderBase::kCache32Shift)];
        }
        toggle = next_dither_toggle(toggle);
    }
}

static void twopoint_repeat(TwoPtRadial* rec, SkPMColor* SK_RESTRICT dstC,
                            const SkPMColor* SK_RESTRICT cache, int toggle,
                            int count) {
    for (; count > 0; --count) {
        SkFixed t = rec->nextT();
        if (TwoPtRadial::DontDrawT(t)) {
            *dstC++ = 0;
        } else {
            SkFixed index = repeat_tileproc(t);
            SkASSERT(index <= 0xFFFF);
            *dstC++ = cache[toggle +
                            (index >> SkGradientShaderBase::kCache32Shift)];
        }
        toggle = next_dither_toggle(toggle);
    }
}

static void twopoint_mirror(TwoPtRadial* rec, SkPMColor* SK_RESTRICT dstC,
                            const SkPMColor* SK_RESTRICT cache, int toggle,
                            int count) {
    for (; count > 0; --count) {
        SkFixed t = rec->nextT();
        if (TwoPtRadial::DontDrawT(t)) {
            *dstC++ = 0;
        } else {
            SkFixed index = mirror_tileproc(t);
            SkASSERT(index <= 0xFFFF);
            *dstC++ = cache[toggle +
                            (index >> SkGradientShaderBase::kCache32Shift)];
        }
        toggle = next_dither_toggle(toggle);
    }
}

void SkTwoPointConicalGradient::init() {
    fRec.init(fCenter1, fRadius1, fCenter2, fRadius2);
    fPtsToUnit.reset();
}

/////////////////////////////////////////////////////////////////////

SkTwoPointConicalGradient::SkTwoPointConicalGradient(
        const SkPoint& start, SkScalar startRadius,
        const SkPoint& end, SkScalar endRadius,
        const Descriptor& desc)
    : SkGradientShaderBase(desc),
    fCenter1(start),
    fCenter2(end),
    fRadius1(startRadius),
    fRadius2(endRadius) {
    // this is degenerate, and should be caught by our caller
    SkASSERT(fCenter1 != fCenter2 || fRadius1 != fRadius2);
    this->init();
}

bool SkTwoPointConicalGradient::isOpaque() const {
    return INHERITED::isOpaque() && this->fRec.fConeFillsPlane;
}

void SkTwoPointConicalGradient::shadeSpan(int x, int y, SkPMColor* dstCParam,
                                          int count) {
    int toggle = init_dither_toggle(x, y);

    SkASSERT(count > 0);

    SkPMColor* SK_RESTRICT dstC = dstCParam;

    SkMatrix::MapXYProc dstProc = fDstToIndexProc;

    const SkPMColor* SK_RESTRICT cache = this->getCache32();

    TwoPointConicalProc shadeProc = twopoint_repeat;
    if (SkShader::kClamp_TileMode == fTileMode) {
        shadeProc = twopoint_clamp;
    } else if (SkShader::kMirror_TileMode == fTileMode) {
        shadeProc = twopoint_mirror;
    } else {
        SkASSERT(SkShader::kRepeat_TileMode == fTileMode);
    }

    if (fDstToIndexClass != kPerspective_MatrixClass) {
        SkPoint srcPt;
        dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf,
                SkIntToScalar(y) + SK_ScalarHalf, &srcPt);
        SkScalar dx, fx = srcPt.fX;
        SkScalar dy, fy = srcPt.fY;

        if (fDstToIndexClass == kFixedStepInX_MatrixClass) {
            SkFixed fixedX, fixedY;
            (void)fDstToIndex.fixedStepInX(SkIntToScalar(y), &fixedX, &fixedY);
            dx = SkFixedToScalar(fixedX);
            dy = SkFixedToScalar(fixedY);
        } else {
            SkASSERT(fDstToIndexClass == kLinear_MatrixClass);
            dx = fDstToIndex.getScaleX();
            dy = fDstToIndex.getSkewY();
        }

        fRec.setup(fx, fy, dx, dy);
        (*shadeProc)(&fRec, dstC, cache, toggle, count);
    } else {    // perspective case
        SkScalar dstX = SkIntToScalar(x);
        SkScalar dstY = SkIntToScalar(y);
        for (; count > 0; --count) {
            SkPoint srcPt;
            dstProc(fDstToIndex, dstX, dstY, &srcPt);
            dstX += SK_Scalar1;

            fRec.setup(srcPt.fX, srcPt.fY, 0, 0);
            (*shadeProc)(&fRec, dstC, cache, toggle, 1);
            toggle = next_dither_toggle(toggle);
        }
    }
}

bool SkTwoPointConicalGradient::setContext(const SkBitmap& device,
                                           const SkPaint& paint,
                                           const SkMatrix& matrix) {
    if (!this->INHERITED::setContext(device, paint, matrix)) {
        return false;
    }

    // we don't have a span16 proc
    fFlags &= ~kHasSpan16_Flag;

    // in general, we might discard based on computed-radius, so clear
    // this flag (todo: sometimes we can detect that we never discard...)
    fFlags &= ~kOpaqueAlpha_Flag;

    return true;
}

SkShader::BitmapType SkTwoPointConicalGradient::asABitmap(
    SkBitmap* bitmap, SkMatrix* matrix, SkShader::TileMode* xy) const {
    SkPoint diff = fCenter2 - fCenter1;
    SkScalar diffLen = 0;

    if (bitmap) {
        this->getGradientTableBitmap(bitmap);
    }
    if (matrix) {
        diffLen = diff.length();
    }
    if (matrix) {
        if (diffLen) {
            SkScalar invDiffLen = SkScalarInvert(diffLen);
            // rotate to align circle centers with the x-axis
            matrix->setSinCos(-SkScalarMul(invDiffLen, diff.fY),
                              SkScalarMul(invDiffLen, diff.fX));
        } else {
            matrix->reset();
        }
        matrix->preTranslate(-fCenter1.fX, -fCenter1.fY);
    }
    if (xy) {
        xy[0] = fTileMode;
        xy[1] = kClamp_TileMode;
    }
    return kTwoPointConical_BitmapType;
}

SkShader::GradientType SkTwoPointConicalGradient::asAGradient(
    GradientInfo* info) const {
    if (info) {
        commonAsAGradient(info);
        info->fPoint[0] = fCenter1;
        info->fPoint[1] = fCenter2;
        info->fRadius[0] = fRadius1;
        info->fRadius[1] = fRadius2;
    }
    return kConical_GradientType;
}

SkTwoPointConicalGradient::SkTwoPointConicalGradient(
    SkFlattenableReadBuffer& buffer)
    : INHERITED(buffer),
    fCenter1(buffer.readPoint()),
    fCenter2(buffer.readPoint()),
    fRadius1(buffer.readScalar()),
    fRadius2(buffer.readScalar()) {
    this->init();
};

void SkTwoPointConicalGradient::flatten(
    SkFlattenableWriteBuffer& buffer) const {
    this->INHERITED::flatten(buffer);
    buffer.writePoint(fCenter1);
    buffer.writePoint(fCenter2);
    buffer.writeScalar(fRadius1);
    buffer.writeScalar(fRadius2);
}

/////////////////////////////////////////////////////////////////////

#if SK_SUPPORT_GPU

#include "GrTBackendEffectFactory.h"

// For brevity
typedef GrGLUniformManager::UniformHandle UniformHandle;
static const UniformHandle kInvalidUniformHandle = GrGLUniformManager::kInvalidUniformHandle;

class GrGLConical2Gradient : public GrGLGradientEffect {
public:

    GrGLConical2Gradient(const GrBackendEffectFactory& factory, const GrDrawEffect&);
    virtual ~GrGLConical2Gradient() { }

    virtual void emitCode(GrGLShaderBuilder*,
                          const GrDrawEffect&,
                          EffectKey,
                          const char* outputColor,
                          const char* inputColor,
                          const TextureSamplerArray&) SK_OVERRIDE;
    virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE;

    static EffectKey GenKey(const GrDrawEffect&, const GrGLCaps& caps);

protected:

    UniformHandle           fVSParamUni;
    UniformHandle           fFSParamUni;

    const char* fVSVaryingName;
    const char* fFSVaryingName;

    bool fIsDegenerate;

    // @{
    /// Values last uploaded as uniforms

    SkScalar fCachedCenter;
    SkScalar fCachedRadius;
    SkScalar fCachedDiffRadius;

    // @}

private:

    typedef GrGLGradientEffect INHERITED;

};

/////////////////////////////////////////////////////////////////////

class GrConical2Gradient : public GrGradientEffect {
public:

    static GrEffectRef* Create(GrContext* ctx,
                               const SkTwoPointConicalGradient& shader,
                               const SkMatrix& matrix,
                               SkShader::TileMode tm) {
        AutoEffectUnref effect(SkNEW_ARGS(GrConical2Gradient, (ctx, shader, matrix, tm)));
        return CreateEffectRef(effect);
    }

    virtual ~GrConical2Gradient() { }

    static const char* Name() { return "Two-Point Conical Gradient"; }
    virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE {
        return GrTBackendEffectFactory<GrConical2Gradient>::getInstance();
    }

    // The radial gradient parameters can collapse to a linear (instead of quadratic) equation.
    bool isDegenerate() const { return SkScalarAbs(fDiffRadius) == SkScalarAbs(fCenterX1); }
    SkScalar center() const { return fCenterX1; }
    SkScalar diffRadius() const { return fDiffRadius; }
    SkScalar radius() const { return fRadius0; }

    typedef GrGLConical2Gradient GLEffect;

private:
    virtual bool onIsEqual(const GrEffect& sBase) const SK_OVERRIDE {
        const GrConical2Gradient& s = CastEffect<GrConical2Gradient>(sBase);
        return (INHERITED::onIsEqual(sBase) &&
                this->fCenterX1 == s.fCenterX1 &&
                this->fRadius0 == s.fRadius0 &&
                this->fDiffRadius == s.fDiffRadius);
    }

    GrConical2Gradient(GrContext* ctx,
                       const SkTwoPointConicalGradient& shader,
                       const SkMatrix& matrix,
                       SkShader::TileMode tm)
        : INHERITED(ctx, shader, matrix, tm)
        , fCenterX1(shader.getCenterX1())
        , fRadius0(shader.getStartRadius())
        , fDiffRadius(shader.getDiffRadius()) { }

    GR_DECLARE_EFFECT_TEST;

    // @{
    // Cache of values - these can change arbitrarily, EXCEPT
    // we shouldn't change between degenerate and non-degenerate?!

    SkScalar fCenterX1;
    SkScalar fRadius0;
    SkScalar fDiffRadius;

    // @}

    typedef GrGradientEffect INHERITED;
};

GR_DEFINE_EFFECT_TEST(GrConical2Gradient);

GrEffectRef* GrConical2Gradient::TestCreate(SkMWCRandom* random,
                                            GrContext* context,
                                            const GrDrawTargetCaps&,
                                            GrTexture**) {
    SkPoint center1 = {random->nextUScalar1(), random->nextUScalar1()};
    SkScalar radius1 = random->nextUScalar1();
    SkPoint center2;
    SkScalar radius2;
    do {
        center2.set(random->nextUScalar1(), random->nextUScalar1());
        radius2 = random->nextUScalar1 ();
        // If the circles are identical the factory will give us an empty shader.
    } while (radius1 == radius2 && center1 == center2);

    SkColor colors[kMaxRandomGradientColors];
    SkScalar stopsArray[kMaxRandomGradientColors];
    SkScalar* stops = stopsArray;
    SkShader::TileMode tm;
    int colorCount = RandomGradientParams(random, colors, &stops, &tm);
    SkAutoTUnref<SkShader> shader(SkGradientShader::CreateTwoPointConical(center1, radius1,
                                                                          center2, radius2,
                                                                          colors, stops, colorCount,
                                                                          tm));
    SkPaint paint;
    return shader->asNewEffect(context, paint);
}


/////////////////////////////////////////////////////////////////////

GrGLConical2Gradient::GrGLConical2Gradient(const GrBackendEffectFactory& factory,
                                           const GrDrawEffect& drawEffect)
    : INHERITED(factory)
    , fVSParamUni(kInvalidUniformHandle)
    , fFSParamUni(kInvalidUniformHandle)
    , fVSVaryingName(NULL)
    , fFSVaryingName(NULL)
    , fCachedCenter(SK_ScalarMax)
    , fCachedRadius(-SK_ScalarMax)
    , fCachedDiffRadius(-SK_ScalarMax) {

    const GrConical2Gradient& data = drawEffect.castEffect<GrConical2Gradient>();
    fIsDegenerate = data.isDegenerate();
}

void GrGLConical2Gradient::emitCode(GrGLShaderBuilder* builder,
                                    const GrDrawEffect&,
                                    EffectKey key,
                                    const char* outputColor,
                                    const char* inputColor,
                                    const TextureSamplerArray& samplers) {
    const char* fsCoords;
    const char* vsCoordsVarying;
    GrSLType coordsVaryingType;
    this->setupMatrix(builder, key, &fsCoords, &vsCoordsVarying, &coordsVaryingType);

    this->emitYCoordUniform(builder);
    // 2 copies of uniform array, 1 for each of vertex & fragment shader,
    // to work around Xoom bug. Doesn't seem to cause performance decrease
    // in test apps, but need to keep an eye on it.
    fVSParamUni = builder->addUniformArray(GrGLShaderBuilder::kVertex_ShaderType,
                                           kFloat_GrSLType, "Conical2VSParams", 6);
    fFSParamUni = builder->addUniformArray(GrGLShaderBuilder::kFragment_ShaderType,
                                           kFloat_GrSLType, "Conical2FSParams", 6);

    // For radial gradients without perspective we can pass the linear
    // part of the quadratic as a varying.
    if (kVec2f_GrSLType == coordsVaryingType) {
        builder->addVarying(kFloat_GrSLType, "Conical2BCoeff",
                            &fVSVaryingName, &fFSVaryingName);
    }

    // VS
    {
        SkString p2; // distance between centers
        SkString p3; // start radius
        SkString p5; // difference in radii (r1 - r0)
        builder->getUniformVariable(fVSParamUni).appendArrayAccess(2, &p2);
        builder->getUniformVariable(fVSParamUni).appendArrayAccess(3, &p3);
        builder->getUniformVariable(fVSParamUni).appendArrayAccess(5, &p5);

        // For radial gradients without perspective we can pass the linear
        // part of the quadratic as a varying.
        if (kVec2f_GrSLType == coordsVaryingType) {
            // r2Var = -2 * (r2Parm[2] * varCoord.x - r2Param[3] * r2Param[5])
            builder->vsCodeAppendf("\t%s = -2.0 * (%s * %s.x + %s * %s);\n",
                                   fVSVaryingName, p2.c_str(),
                                   vsCoordsVarying, p3.c_str(), p5.c_str());
        }
    }

    // FS
    {

        SkString cName("c");
        SkString ac4Name("ac4");
        SkString dName("d");
        SkString qName("q");
        SkString r0Name("r0");
        SkString r1Name("r1");
        SkString tName("t");
        SkString p0; // 4a
        SkString p1; // 1/a
        SkString p2; // distance between centers
        SkString p3; // start radius
        SkString p4; // start radius squared
        SkString p5; // difference in radii (r1 - r0)

        builder->getUniformVariable(fFSParamUni).appendArrayAccess(0, &p0);
        builder->getUniformVariable(fFSParamUni).appendArrayAccess(1, &p1);
        builder->getUniformVariable(fFSParamUni).appendArrayAccess(2, &p2);
        builder->getUniformVariable(fFSParamUni).appendArrayAccess(3, &p3);
        builder->getUniformVariable(fFSParamUni).appendArrayAccess(4, &p4);
        builder->getUniformVariable(fFSParamUni).appendArrayAccess(5, &p5);

        // If we we're able to interpolate the linear component,
        // bVar is the varying; otherwise compute it
        SkString bVar;
        if (kVec2f_GrSLType == coordsVaryingType) {
            bVar = fFSVaryingName;
        } else {
            bVar = "b";
            builder->fsCodeAppendf("\tfloat %s = -2.0 * (%s * %s.x + %s * %s);\n",
                                   bVar.c_str(), p2.c_str(), fsCoords,
                                   p3.c_str(), p5.c_str());
        }

        // output will default to transparent black (we simply won't write anything
        // else to it if invalid, instead of discarding or returning prematurely)
        builder->fsCodeAppendf("\t%s = vec4(0.0,0.0,0.0,0.0);\n", outputColor);

        // c = (x^2)+(y^2) - params[4]
        builder->fsCodeAppendf("\tfloat %s = dot(%s, %s) - %s;\n", cName.c_str(),
                               fsCoords, fsCoords,
                               p4.c_str());

        // Non-degenerate case (quadratic)
        if (!fIsDegenerate) {

            // ac4 = params[0] * c
            builder->fsCodeAppendf("\tfloat %s = %s * %s;\n", ac4Name.c_str(), p0.c_str(),
                                   cName.c_str());

            // d = b^2 - ac4
            builder->fsCodeAppendf("\tfloat %s = %s * %s - %s;\n", dName.c_str(),
                                   bVar.c_str(), bVar.c_str(), ac4Name.c_str());

            // only proceed if discriminant is >= 0
            builder->fsCodeAppendf("\tif (%s >= 0.0) {\n", dName.c_str());

            // intermediate value we'll use to compute the roots
            // q = -0.5 * (b +/- sqrt(d))
            builder->fsCodeAppendf("\t\tfloat %s = -0.5 * (%s + (%s < 0.0 ? -1.0 : 1.0)"
                                   " * sqrt(%s));\n", qName.c_str(), bVar.c_str(),
                                   bVar.c_str(), dName.c_str());

            // compute both roots
            // r0 = q * params[1]
            builder->fsCodeAppendf("\t\tfloat %s = %s * %s;\n", r0Name.c_str(),
                                   qName.c_str(), p1.c_str());
            // r1 = c / q
            builder->fsCodeAppendf("\t\tfloat %s = %s / %s;\n", r1Name.c_str(),
                                   cName.c_str(), qName.c_str());

            // Note: If there are two roots that both generate radius(t) > 0, the
            // Canvas spec says to choose the larger t.

            // so we'll look at the larger one first:
            builder->fsCodeAppendf("\t\tfloat %s = max(%s, %s);\n", tName.c_str(),
                                   r0Name.c_str(), r1Name.c_str());

            // if r(t) > 0, then we're done; t will be our x coordinate
            builder->fsCodeAppendf("\t\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
                                   p5.c_str(), p3.c_str());

            builder->fsCodeAppend("\t\t");
            this->emitColorLookup(builder, tName.c_str(), outputColor, inputColor, samplers[0]);

            // otherwise, if r(t) for the larger root was <= 0, try the other root
            builder->fsCodeAppend("\t\t} else {\n");
            builder->fsCodeAppendf("\t\t\t%s = min(%s, %s);\n", tName.c_str(),
                                   r0Name.c_str(), r1Name.c_str());

            // if r(t) > 0 for the smaller root, then t will be our x coordinate
            builder->fsCodeAppendf("\t\t\tif (%s * %s + %s > 0.0) {\n",
                                   tName.c_str(), p5.c_str(), p3.c_str());

            builder->fsCodeAppend("\t\t\t");
            this->emitColorLookup(builder, tName.c_str(), outputColor, inputColor, samplers[0]);

            // end if (r(t) > 0) for smaller root
            builder->fsCodeAppend("\t\t\t}\n");
            // end if (r(t) > 0), else, for larger root
            builder->fsCodeAppend("\t\t}\n");
            // end if (discriminant >= 0)
            builder->fsCodeAppend("\t}\n");
        } else {

            // linear case: t = -c/b
            builder->fsCodeAppendf("\tfloat %s = -(%s / %s);\n", tName.c_str(),
                                   cName.c_str(), bVar.c_str());

            // if r(t) > 0, then t will be the x coordinate
            builder->fsCodeAppendf("\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
                                   p5.c_str(), p3.c_str());
            builder->fsCodeAppend("\t");
            this->emitColorLookup(builder, tName.c_str(), outputColor, inputColor, samplers[0]);
            builder->fsCodeAppend("\t}\n");
        }
    }
}

void GrGLConical2Gradient::setData(const GrGLUniformManager& uman,
                                   const GrDrawEffect& drawEffect) {
    INHERITED::setData(uman, drawEffect);
    const GrConical2Gradient& data = drawEffect.castEffect<GrConical2Gradient>();
    GrAssert(data.isDegenerate() == fIsDegenerate);
    SkScalar centerX1 = data.center();
    SkScalar radius0 = data.radius();
    SkScalar diffRadius = data.diffRadius();

    if (fCachedCenter != centerX1 ||
        fCachedRadius != radius0 ||
        fCachedDiffRadius != diffRadius) {

        SkScalar a = SkScalarMul(centerX1, centerX1) - diffRadius * diffRadius;

        // When we're in the degenerate (linear) case, the second
        // value will be INF but the program doesn't read it. (We
        // use the same 6 uniforms even though we don't need them
        // all in the linear case just to keep the code complexity
        // down).
        float values[6] = {
            SkScalarToFloat(a * 4),
            1.f / (SkScalarToFloat(a)),
            SkScalarToFloat(centerX1),
            SkScalarToFloat(radius0),
            SkScalarToFloat(SkScalarMul(radius0, radius0)),
            SkScalarToFloat(diffRadius)
        };

        uman.set1fv(fVSParamUni, 0, 6, values);
        uman.set1fv(fFSParamUni, 0, 6, values);
        fCachedCenter = centerX1;
        fCachedRadius = radius0;
        fCachedDiffRadius = diffRadius;
    }
}

GrGLEffect::EffectKey GrGLConical2Gradient::GenKey(const GrDrawEffect& drawEffect,
                                                   const GrGLCaps&) {
    enum {
        kIsDegenerate = 1 << kMatrixKeyBitCnt,
    };

    EffectKey key = GenMatrixKey(drawEffect);
    if (drawEffect.castEffect<GrConical2Gradient>().isDegenerate()) {
        key |= kIsDegenerate;
    }
    return key;
}

/////////////////////////////////////////////////////////////////////

GrEffectRef* SkTwoPointConicalGradient::asNewEffect(GrContext* context, const SkPaint&) const {
    SkASSERT(NULL != context);
    SkASSERT(fPtsToUnit.isIdentity());
    // invert the localM, translate to center1, rotate so center2 is on x axis.
    SkMatrix matrix;
    if (!this->getLocalMatrix().invert(&matrix)) {
        return NULL;
    }
    matrix.postTranslate(-fCenter1.fX, -fCenter1.fY);

    SkPoint diff = fCenter2 - fCenter1;
    SkScalar diffLen = diff.length();
    if (0 != diffLen) {
        SkScalar invDiffLen = SkScalarInvert(diffLen);
        SkMatrix rot;
        rot.setSinCos(-SkScalarMul(invDiffLen, diff.fY),
                       SkScalarMul(invDiffLen, diff.fX));
        matrix.postConcat(rot);
    }

    return GrConical2Gradient::Create(context, *this, matrix, fTileMode);
}

#else

GrEffectRef* SkTwoPointConicalGradient::asNewEffect(GrContext*, const SkPaint&) const {
    SkDEBUGFAIL("Should not call in GPU-less build");
    return NULL;
}

#endif

#ifdef SK_DEVELOPER
void SkTwoPointConicalGradient::toString(SkString* str) const {
    str->append("SkTwoPointConicalGradient: (");

    str->append("center1: (");
    str->appendScalar(fCenter1.fX);
    str->append(", ");
    str->appendScalar(fCenter1.fY);
    str->append(") radius1: ");
    str->appendScalar(fRadius1);
    str->append(" ");

    str->append("center2: (");
    str->appendScalar(fCenter2.fX);
    str->append(", ");
    str->appendScalar(fCenter2.fY);
    str->append(") radius2: ");
    str->appendScalar(fRadius2);
    str->append(" ");

    this->INHERITED::toString(str);

    str->append(")");
}
#endif