aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/effects/gradients/SkRadialGradient.cpp
blob: ff3a2aa75c19ce45d437ee234b64e8f905ca4264 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkRadialGradient.h"
#include "SkRadialGradient_Table.h"

#define kSQRT_TABLE_BITS    11
#define kSQRT_TABLE_SIZE    (1 << kSQRT_TABLE_BITS)

#if defined(SK_BUILD_FOR_WIN32) && defined(SK_DEBUG)

#include <stdio.h>

void SkRadialGradient_BuildTable() {
    // build it 0..127 x 0..127, so we use 2^15 - 1 in the numerator for our "fixed" table

    FILE* file = ::fopen("SkRadialGradient_Table.h", "w");
    SkASSERT(file);
    ::fprintf(file, "static const uint8_t gSqrt8Table[] = {\n");

    for (int i = 0; i < kSQRT_TABLE_SIZE; i++) {
        if ((i & 15) == 0) {
            ::fprintf(file, "\t");
        }

        uint8_t value = SkToU8(SkFixedSqrt(i * SK_Fixed1 / kSQRT_TABLE_SIZE) >> 8);

        ::fprintf(file, "0x%02X", value);
        if (i < kSQRT_TABLE_SIZE-1) {
            ::fprintf(file, ", ");
        }
        if ((i & 15) == 15) {
            ::fprintf(file, "\n");
        }
    }
    ::fprintf(file, "};\n");
    ::fclose(file);
}

#endif

namespace {

void rad_to_unit_matrix(const SkPoint& center, SkScalar radius,
                               SkMatrix* matrix) {
    SkScalar    inv = SkScalarInvert(radius);

    matrix->setTranslate(-center.fX, -center.fY);
    matrix->postScale(inv, inv);
}

typedef void (* RadialShade16Proc)(SkScalar sfx, SkScalar sdx,
        SkScalar sfy, SkScalar sdy,
        uint16_t* dstC, const uint16_t* cache,
        int toggle, int count);

void shadeSpan16_radial_clamp(SkScalar sfx, SkScalar sdx,
        SkScalar sfy, SkScalar sdy,
        uint16_t* SK_RESTRICT dstC, const uint16_t* SK_RESTRICT cache,
        int toggle, int count) {
    const uint8_t* SK_RESTRICT sqrt_table = gSqrt8Table;

    /* knock these down so we can pin against +- 0x7FFF, which is an
       immediate load, rather than 0xFFFF which is slower. This is a
       compromise, since it reduces our precision, but that appears
       to be visually OK. If we decide this is OK for all of our cases,
       we could (it seems) put this scale-down into fDstToIndex,
       to avoid having to do these extra shifts each time.
    */
    SkFixed fx = SkScalarToFixed(sfx) >> 1;
    SkFixed dx = SkScalarToFixed(sdx) >> 1;
    SkFixed fy = SkScalarToFixed(sfy) >> 1;
    SkFixed dy = SkScalarToFixed(sdy) >> 1;
    // might perform this check for the other modes,
    // but the win will be a smaller % of the total
    if (dy == 0) {
        fy = SkPin32(fy, -0xFFFF >> 1, 0xFFFF >> 1);
        fy *= fy;
        do {
            unsigned xx = SkPin32(fx, -0xFFFF >> 1, 0xFFFF >> 1);
            unsigned fi = (xx * xx + fy) >> (14 + 16 - kSQRT_TABLE_BITS);
            fi = SkFastMin32(fi, 0xFFFF >> (16 - kSQRT_TABLE_BITS));
            fx += dx;
            *dstC++ = cache[toggle +
                            (sqrt_table[fi] >> SkGradientShaderBase::kSqrt16Shift)];
            toggle = next_dither_toggle16(toggle);
        } while (--count != 0);
    } else {
        do {
            unsigned xx = SkPin32(fx, -0xFFFF >> 1, 0xFFFF >> 1);
            unsigned fi = SkPin32(fy, -0xFFFF >> 1, 0xFFFF >> 1);
            fi = (xx * xx + fi * fi) >> (14 + 16 - kSQRT_TABLE_BITS);
            fi = SkFastMin32(fi, 0xFFFF >> (16 - kSQRT_TABLE_BITS));
            fx += dx;
            fy += dy;
            *dstC++ = cache[toggle +
                            (sqrt_table[fi] >> SkGradientShaderBase::kSqrt16Shift)];
            toggle = next_dither_toggle16(toggle);
        } while (--count != 0);
    }
}

void shadeSpan16_radial_mirror(SkScalar sfx, SkScalar sdx,
        SkScalar sfy, SkScalar sdy,
        uint16_t* SK_RESTRICT dstC, const uint16_t* SK_RESTRICT cache,
        int toggle, int count) {
    do {
#ifdef SK_SCALAR_IS_FLOAT
        float fdist = sk_float_sqrt(sfx*sfx + sfy*sfy);
        SkFixed dist = SkFloatToFixed(fdist);
#else
        SkFixed magnitudeSquared = SkFixedSquare(sfx) +
            SkFixedSquare(sfy);
        if (magnitudeSquared < 0) // Overflow.
            magnitudeSquared = SK_FixedMax;
        SkFixed dist = SkFixedSqrt(magnitudeSquared);
#endif
        unsigned fi = mirror_tileproc(dist);
        SkASSERT(fi <= 0xFFFF);
        *dstC++ = cache[toggle + (fi >> SkGradientShaderBase::kCache16Shift)];
        toggle = next_dither_toggle16(toggle);
        sfx += sdx;
        sfy += sdy;
    } while (--count != 0);
}

void shadeSpan16_radial_repeat(SkScalar sfx, SkScalar sdx,
        SkScalar sfy, SkScalar sdy,
        uint16_t* SK_RESTRICT dstC, const uint16_t* SK_RESTRICT cache,
        int toggle, int count) {
    SkFixed fx = SkScalarToFixed(sfx);
    SkFixed dx = SkScalarToFixed(sdx);
    SkFixed fy = SkScalarToFixed(sfy);
    SkFixed dy = SkScalarToFixed(sdy);
    do {
        SkFixed dist = SkFixedSqrt(SkFixedSquare(fx) + SkFixedSquare(fy));
        unsigned fi = repeat_tileproc(dist);
        SkASSERT(fi <= 0xFFFF);
        fx += dx;
        fy += dy;
        *dstC++ = cache[toggle + (fi >> SkGradientShaderBase::kCache16Shift)];
        toggle = next_dither_toggle16(toggle);
    } while (--count != 0);
}

}

/////////////////////////////////////////////////////////////////////

SkRadialGradient::SkRadialGradient(const SkPoint& center, SkScalar radius,
                const SkColor colors[], const SkScalar pos[], int colorCount,
                SkShader::TileMode mode, SkUnitMapper* mapper)
    : SkGradientShaderBase(colors, pos, colorCount, mode, mapper),
      fCenter(center),
      fRadius(radius)
{
    // make sure our table is insync with our current #define for kSQRT_TABLE_SIZE
    SkASSERT(sizeof(gSqrt8Table) == kSQRT_TABLE_SIZE);

    rad_to_unit_matrix(center, radius, &fPtsToUnit);
}

void SkRadialGradient::shadeSpan16(int x, int y, uint16_t* dstCParam,
                         int count) {
    SkASSERT(count > 0);

    uint16_t* SK_RESTRICT dstC = dstCParam;

    SkPoint             srcPt;
    SkMatrix::MapXYProc dstProc = fDstToIndexProc;
    TileProc            proc = fTileProc;
    const uint16_t* SK_RESTRICT cache = this->getCache16();
    int                 toggle = init_dither_toggle16(x, y);

    if (fDstToIndexClass != kPerspective_MatrixClass) {
        dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf,
                             SkIntToScalar(y) + SK_ScalarHalf, &srcPt);

        SkScalar sdx = fDstToIndex.getScaleX();
        SkScalar sdy = fDstToIndex.getSkewY();

        if (fDstToIndexClass == kFixedStepInX_MatrixClass) {
            SkFixed storage[2];
            (void)fDstToIndex.fixedStepInX(SkIntToScalar(y),
                                           &storage[0], &storage[1]);
            sdx = SkFixedToScalar(storage[0]);
            sdy = SkFixedToScalar(storage[1]);
        } else {
            SkASSERT(fDstToIndexClass == kLinear_MatrixClass);
        }

        RadialShade16Proc shadeProc = shadeSpan16_radial_repeat;
        if (SkShader::kClamp_TileMode == fTileMode) {
            shadeProc = shadeSpan16_radial_clamp;
        } else if (SkShader::kMirror_TileMode == fTileMode) {
            shadeProc = shadeSpan16_radial_mirror;
        } else {
            SkASSERT(SkShader::kRepeat_TileMode == fTileMode);
        }
        (*shadeProc)(srcPt.fX, sdx, srcPt.fY, sdy, dstC,
                     cache, toggle, count);
    } else {    // perspective case
        SkScalar dstX = SkIntToScalar(x);
        SkScalar dstY = SkIntToScalar(y);
        do {
            dstProc(fDstToIndex, dstX, dstY, &srcPt);
            unsigned fi = proc(SkScalarToFixed(srcPt.length()));
            SkASSERT(fi <= 0xFFFF);

            int index = fi >> (16 - kCache16Bits);
            *dstC++ = cache[toggle + index];
            toggle = next_dither_toggle16(toggle);

            dstX += SK_Scalar1;
        } while (--count != 0);
    }
}

SkShader::BitmapType SkRadialGradient::asABitmap(SkBitmap* bitmap,
    SkMatrix* matrix, SkShader::TileMode* xy) const {
    if (bitmap) {
        this->getGradientTableBitmap(bitmap);
    }
    if (matrix) {
        matrix->setScale(SkIntToScalar(kCache32Count),
                         SkIntToScalar(kCache32Count));
        matrix->preConcat(fPtsToUnit);
    }
    if (xy) {
        xy[0] = fTileMode;
        xy[1] = kClamp_TileMode;
    }
    return kRadial_BitmapType;
}

SkShader::GradientType SkRadialGradient::asAGradient(GradientInfo* info) const {
    if (info) {
        commonAsAGradient(info);
        info->fPoint[0] = fCenter;
        info->fRadius[0] = fRadius;
    }
    return kRadial_GradientType;
}

SkRadialGradient::SkRadialGradient(SkFlattenableReadBuffer& buffer)
    : INHERITED(buffer),
      fCenter(buffer.readPoint()),
      fRadius(buffer.readScalar()) {
}

void SkRadialGradient::flatten(SkFlattenableWriteBuffer& buffer) const {
    this->INHERITED::flatten(buffer);
    buffer.writePoint(fCenter);
    buffer.writeScalar(fRadius);
}

namespace {

inline bool radial_completely_pinned(int fx, int dx, int fy, int dy) {
    // fast, overly-conservative test: checks unit square instead
    // of unit circle
    bool xClamped = (fx >= SK_FixedHalf && dx >= 0) ||
                    (fx <= -SK_FixedHalf && dx <= 0);
    bool yClamped = (fy >= SK_FixedHalf && dy >= 0) ||
                    (fy <= -SK_FixedHalf && dy <= 0);

    return xClamped || yClamped;
}

// Return true if (fx * fy) is always inside the unit circle
// SkPin32 is expensive, but so are all the SkFixedMul in this test,
// so it shouldn't be run if count is small.
inline bool no_need_for_radial_pin(int fx, int dx,
                                          int fy, int dy, int count) {
    SkASSERT(count > 0);
    if (SkAbs32(fx) > 0x7FFF || SkAbs32(fy) > 0x7FFF) {
        return false;
    }
    if (fx*fx + fy*fy > 0x7FFF*0x7FFF) {
        return false;
    }
    fx += (count - 1) * dx;
    fy += (count - 1) * dy;
    if (SkAbs32(fx) > 0x7FFF || SkAbs32(fy) > 0x7FFF) {
        return false;
    }
    return fx*fx + fy*fy <= 0x7FFF*0x7FFF;
}

#define UNPINNED_RADIAL_STEP \
    fi = (fx * fx + fy * fy) >> (14 + 16 - kSQRT_TABLE_BITS); \
    *dstC++ = cache[toggle + \
                    (sqrt_table[fi] >> SkGradientShaderBase::kSqrt32Shift)]; \
    toggle = next_dither_toggle(toggle); \
    fx += dx; \
    fy += dy;

typedef void (* RadialShadeProc)(SkScalar sfx, SkScalar sdx,
        SkScalar sfy, SkScalar sdy,
        SkPMColor* dstC, const SkPMColor* cache,
        int count, int toggle);

// On Linux, this is faster with SkPMColor[] params than SkPMColor* SK_RESTRICT
void shadeSpan_radial_clamp(SkScalar sfx, SkScalar sdx,
        SkScalar sfy, SkScalar sdy,
        SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache,
        int count, int toggle) {
    // Floating point seems to be slower than fixed point,
    // even when we have float hardware.
    const uint8_t* SK_RESTRICT sqrt_table = gSqrt8Table;
    SkFixed fx = SkScalarToFixed(sfx) >> 1;
    SkFixed dx = SkScalarToFixed(sdx) >> 1;
    SkFixed fy = SkScalarToFixed(sfy) >> 1;
    SkFixed dy = SkScalarToFixed(sdy) >> 1;
    if ((count > 4) && radial_completely_pinned(fx, dx, fy, dy)) {
        unsigned fi = SkGradientShaderBase::kCache32Count - 1;
        sk_memset32_dither(dstC,
            cache[toggle + fi],
            cache[next_dither_toggle(toggle) + fi],
            count);
    } else if ((count > 4) &&
               no_need_for_radial_pin(fx, dx, fy, dy, count)) {
        unsigned fi;
        // 4x unroll appears to be no faster than 2x unroll on Linux
        while (count > 1) {
            UNPINNED_RADIAL_STEP;
            UNPINNED_RADIAL_STEP;
            count -= 2;
        }
        if (count) {
            UNPINNED_RADIAL_STEP;
        }
    } else  {
        // Specializing for dy == 0 gains us 25% on Skia benchmarks
        if (dy == 0) {
            unsigned yy = SkPin32(fy, -0xFFFF >> 1, 0xFFFF >> 1);
            yy *= yy;
            do {
                unsigned xx = SkPin32(fx, -0xFFFF >> 1, 0xFFFF >> 1);
                unsigned fi = (xx * xx + yy) >> (14 + 16 - kSQRT_TABLE_BITS);
                fi = SkFastMin32(fi, 0xFFFF >> (16 - kSQRT_TABLE_BITS));
                *dstC++ = cache[toggle + (sqrt_table[fi] >>
                    SkGradientShaderBase::kSqrt32Shift)];
                toggle = next_dither_toggle(toggle);
                fx += dx;
            } while (--count != 0);
        } else {
            do {
                unsigned xx = SkPin32(fx, -0xFFFF >> 1, 0xFFFF >> 1);
                unsigned fi = SkPin32(fy, -0xFFFF >> 1, 0xFFFF >> 1);
                fi = (xx * xx + fi * fi) >> (14 + 16 - kSQRT_TABLE_BITS);
                fi = SkFastMin32(fi, 0xFFFF >> (16 - kSQRT_TABLE_BITS));
                *dstC++ = cache[toggle + (sqrt_table[fi] >>
                    SkGradientShaderBase::kSqrt32Shift)];
                toggle = next_dither_toggle(toggle);
                fx += dx;
                fy += dy;
            } while (--count != 0);
        }
    }
}

// Unrolling this loop doesn't seem to help (when float); we're stalling to
// get the results of the sqrt (?), and don't have enough extra registers to
// have many in flight.
void shadeSpan_radial_mirror(SkScalar sfx, SkScalar sdx,
        SkScalar sfy, SkScalar sdy,
        SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache,
        int count, int toggle) {
    do {
#ifdef SK_SCALAR_IS_FLOAT
        float fdist = sk_float_sqrt(sfx*sfx + sfy*sfy);
        SkFixed dist = SkFloatToFixed(fdist);
#else
        SkFixed magnitudeSquared = SkFixedSquare(sfx) +
            SkFixedSquare(sfy);
        if (magnitudeSquared < 0) // Overflow.
            magnitudeSquared = SK_FixedMax;
        SkFixed dist = SkFixedSqrt(magnitudeSquared);
#endif
        unsigned fi = mirror_tileproc(dist);
        SkASSERT(fi <= 0xFFFF);
        *dstC++ = cache[toggle + (fi >> SkGradientShaderBase::kCache32Shift)];
        toggle = next_dither_toggle(toggle);
        sfx += sdx;
        sfy += sdy;
    } while (--count != 0);
}

void shadeSpan_radial_repeat(SkScalar sfx, SkScalar sdx,
        SkScalar sfy, SkScalar sdy,
        SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache,
        int count, int toggle) {
    SkFixed fx = SkScalarToFixed(sfx);
    SkFixed dx = SkScalarToFixed(sdx);
    SkFixed fy = SkScalarToFixed(sfy);
    SkFixed dy = SkScalarToFixed(sdy);
    do {
        SkFixed magnitudeSquared = SkFixedSquare(fx) +
            SkFixedSquare(fy);
        if (magnitudeSquared < 0) // Overflow.
            magnitudeSquared = SK_FixedMax;
        SkFixed dist = SkFixedSqrt(magnitudeSquared);
        unsigned fi = repeat_tileproc(dist);
        SkASSERT(fi <= 0xFFFF);
        *dstC++ = cache[toggle + (fi >> SkGradientShaderBase::kCache32Shift)];
        toggle = next_dither_toggle(toggle);
        fx += dx;
        fy += dy;
    } while (--count != 0);
}
}

void SkRadialGradient::shadeSpan(int x, int y,
                                SkPMColor* SK_RESTRICT dstC, int count) {
    SkASSERT(count > 0);

    SkPoint             srcPt;
    SkMatrix::MapXYProc dstProc = fDstToIndexProc;
    TileProc            proc = fTileProc;
    const SkPMColor* SK_RESTRICT cache = this->getCache32();
    int toggle = init_dither_toggle(x, y);

    if (fDstToIndexClass != kPerspective_MatrixClass) {
        dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf,
                             SkIntToScalar(y) + SK_ScalarHalf, &srcPt);
        SkScalar sdx = fDstToIndex.getScaleX();
        SkScalar sdy = fDstToIndex.getSkewY();

        if (fDstToIndexClass == kFixedStepInX_MatrixClass) {
            SkFixed storage[2];
            (void)fDstToIndex.fixedStepInX(SkIntToScalar(y),
                                           &storage[0], &storage[1]);
            sdx = SkFixedToScalar(storage[0]);
            sdy = SkFixedToScalar(storage[1]);
        } else {
            SkASSERT(fDstToIndexClass == kLinear_MatrixClass);
        }

        RadialShadeProc shadeProc = shadeSpan_radial_repeat;
        if (SkShader::kClamp_TileMode == fTileMode) {
            shadeProc = shadeSpan_radial_clamp;
        } else if (SkShader::kMirror_TileMode == fTileMode) {
            shadeProc = shadeSpan_radial_mirror;
        } else {
            SkASSERT(SkShader::kRepeat_TileMode == fTileMode);
        }
        (*shadeProc)(srcPt.fX, sdx, srcPt.fY, sdy, dstC, cache, count, toggle);
    } else {    // perspective case
        SkScalar dstX = SkIntToScalar(x);
        SkScalar dstY = SkIntToScalar(y);
        do {
            dstProc(fDstToIndex, dstX, dstY, &srcPt);
            unsigned fi = proc(SkScalarToFixed(srcPt.length()));
            SkASSERT(fi <= 0xFFFF);
            *dstC++ = cache[fi >> SkGradientShaderBase::kCache32Shift];
            dstX += SK_Scalar1;
        } while (--count != 0);
    }
}

/////////////////////////////////////////////////////////////////////

#if SK_SUPPORT_GPU

#include "GrTBackendEffectFactory.h"

class GrGLRadialGradient : public GrGLGradientEffect {
public:

    GrGLRadialGradient(const GrBackendEffectFactory& factory,
                       const GrEffectRef&) : INHERITED (factory) { }
    virtual ~GrGLRadialGradient() { }

    virtual void emitCode(GrGLShaderBuilder*,
                          const GrEffectStage&,
                          EffectKey,
                          const char* vertexCoords,
                          const char* outputColor,
                          const char* inputColor,
                          const TextureSamplerArray&) SK_OVERRIDE;

    static EffectKey GenKey(const GrEffectStage& stage, const GrGLCaps&) {
        return GenMatrixKey(stage);
    }

private:

    typedef GrGLGradientEffect INHERITED;

};

/////////////////////////////////////////////////////////////////////

class GrRadialGradient : public GrGradientEffect {
public:
    static GrEffectRef* Create(GrContext* ctx,
                               const SkRadialGradient& shader,
                               const SkMatrix& matrix,
                               SkShader::TileMode tm) {
        AutoEffectUnref effect(SkNEW_ARGS(GrRadialGradient, (ctx, shader, matrix, tm)));
        return CreateEffectRef(effect);
    }

    virtual ~GrRadialGradient() { }

    static const char* Name() { return "Radial Gradient"; }
    virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE {
        return GrTBackendEffectFactory<GrRadialGradient>::getInstance();
    }

    typedef GrGLRadialGradient GLEffect;

private:
    GrRadialGradient(GrContext* ctx,
                     const SkRadialGradient& shader,
                     const SkMatrix& matrix,
                     SkShader::TileMode tm)
        : INHERITED(ctx, shader, matrix, tm) {
    }

    GR_DECLARE_EFFECT_TEST;

    typedef GrGradientEffect INHERITED;
};

/////////////////////////////////////////////////////////////////////

GR_DEFINE_EFFECT_TEST(GrRadialGradient);

GrEffectRef* GrRadialGradient::TestCreate(SkMWCRandom* random,
                                          GrContext* context,
                                          GrTexture**) {
    SkPoint center = {random->nextUScalar1(), random->nextUScalar1()};
    SkScalar radius = random->nextUScalar1();

    SkColor colors[kMaxRandomGradientColors];
    SkScalar stopsArray[kMaxRandomGradientColors];
    SkScalar* stops = stopsArray;
    SkShader::TileMode tm;
    int colorCount = RandomGradientParams(random, colors, &stops, &tm);
    SkAutoTUnref<SkShader> shader(SkGradientShader::CreateRadial(center, radius,
                                                                 colors, stops, colorCount,
                                                                 tm));
    SkPaint paint;
    return shader->asNewEffect(context, paint);
}

/////////////////////////////////////////////////////////////////////

void GrGLRadialGradient::emitCode(GrGLShaderBuilder* builder,
                                  const GrEffectStage& stage,
                                  EffectKey key,
                                  const char* vertexCoords,
                                  const char* outputColor,
                                  const char* inputColor,
                                  const TextureSamplerArray& samplers) {
    this->emitYCoordUniform(builder);
    const char* coords;
    this->setupMatrix(builder, key, vertexCoords, &coords);
    SkString t("length(");
    t.append(coords);
    t.append(")");
    this->emitColorLookup(builder, t.c_str(), outputColor, inputColor, samplers[0]);
}

/////////////////////////////////////////////////////////////////////

GrEffectRef* SkRadialGradient::asNewEffect(GrContext* context, const SkPaint&) const {
    SkASSERT(NULL != context);

    SkMatrix matrix;
    if (!this->getLocalMatrix().invert(&matrix)) {
        return NULL;
    }
    matrix.postConcat(fPtsToUnit);
    return GrRadialGradient::Create(context, *this, matrix, fTileMode);
}

#else

GrEffectRef* SkRadialGradient::asNewEffect(GrContext*, const SkPaint&) const {
    SkDEBUGFAIL("Should not call in GPU-less build");
    return NULL;
}

#endif

#ifdef SK_DEVELOPER
void SkRadialGradient::toString(SkString* str) const {
    str->append("SkRadialGradient: (");

    str->append("center: (");
    str->appendScalar(fCenter.fX);
    str->append(", ");
    str->appendScalar(fCenter.fY);
    str->append(") radius: ");
    str->appendScalar(fRadius);
    str->append(" ");

    this->INHERITED::toString(str);

    str->append(")");
}
#endif