aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/effects/gradients/Sk4fLinearGradient.cpp
blob: 1100493212e22e1e80758ff06f8a1eb8c1b1eb7c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
/*
 * Copyright 2016 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "Sk4fLinearGradient.h"
#include "Sk4x4f.h"
#include "SkXfermode.h"

namespace {

template<DstType dstType, ApplyPremul premul>
void ramp(const Sk4f& c, const Sk4f& dc, typename DstTraits<dstType, premul>::Type dst[], int n) {
    SkASSERT(n > 0);

    const Sk4f dc2 = dc + dc;
    const Sk4f dc4 = dc2 + dc2;

    Sk4f c0 = c ;
    Sk4f c1 = c + dc;
    Sk4f c2 = c0 + dc2;
    Sk4f c3 = c1 + dc2;

    while (n >= 4) {
        DstTraits<dstType, premul>::store4x(c0, c1, c2, c3, dst);
        dst += 4;

        c0 = c0 + dc4;
        c1 = c1 + dc4;
        c2 = c2 + dc4;
        c3 = c3 + dc4;
        n -= 4;
    }
    if (n & 2) {
        DstTraits<dstType, premul>::store(c0, dst++);
        DstTraits<dstType, premul>::store(c1, dst++);
        c0 = c0 + dc2;
    }
    if (n & 1) {
        DstTraits<dstType, premul>::store(c0, dst);
    }
}

// Planar version of ramp (S32 no-premul only).
template<>
void ramp<DstType::S32, ApplyPremul::False>(const Sk4f& c, const Sk4f& dc, SkPMColor dst[], int n) {
    SkASSERT(n > 0);

    const Sk4f    dc4 = dc * 4;
    const Sk4x4f dc4x = { Sk4f(dc4[0]), Sk4f(dc4[1]), Sk4f(dc4[2]), Sk4f(dc4[3]) };
    Sk4x4f        c4x = Sk4x4f::Transpose(c, c + dc, c + dc * 2, c + dc * 3);

    while (n >= 4) {
        ( sk_linear_to_srgb(c4x.r) <<  0
        | sk_linear_to_srgb(c4x.g) <<  8
        | sk_linear_to_srgb(c4x.b) << 16
        | Sk4f_round(255.0f*c4x.a) << 24).store(dst);

        c4x.r += dc4x.r;
        c4x.g += dc4x.g;
        c4x.b += dc4x.b;
        c4x.a += dc4x.a;

        dst += 4;
        n   -= 4;
    }

    if (n & 2) {
        DstTraits<DstType::S32, ApplyPremul::False>
            ::store(Sk4f(c4x.r[0], c4x.g[0], c4x.b[0], c4x.a[0]), dst++);
        DstTraits<DstType::S32, ApplyPremul::False>
            ::store(Sk4f(c4x.r[1], c4x.g[1], c4x.b[1], c4x.a[1]), dst++);
    }

    if (n & 1) {
        DstTraits<DstType::S32, ApplyPremul::False>
            ::store(Sk4f(c4x.r[n & 2], c4x.g[n & 2], c4x.b[n & 2], c4x.a[n & 2]), dst);
    }
}

template<SkShader::TileMode>
SkScalar pinFx(SkScalar);

template<>
SkScalar pinFx<SkShader::kClamp_TileMode>(SkScalar fx) {
    return fx;
}

template<>
SkScalar pinFx<SkShader::kRepeat_TileMode>(SkScalar fx) {
    const SkScalar f = SkScalarFraction(fx);
    return f < 0 ? f + 1 : f;
}

template<>
SkScalar pinFx<SkShader::kMirror_TileMode>(SkScalar fx) {
    const SkScalar f = SkScalarMod(fx, 2.0f);
    return f < 0 ? f + 2 : f;
}

// true when x is in [k1,k2), or [k2, k1) when the interval is reversed.
// TODO(fmalita): hoist the reversed interval check out of this helper.
bool in_range(SkScalar x, SkScalar k1, SkScalar k2) {
    SkASSERT(k1 != k2);
    return (k1 < k2)
        ? (x >= k1 && x < k2)
        : (x >= k2 && x < k1);
}

} // anonymous namespace

SkLinearGradient::
LinearGradient4fContext::LinearGradient4fContext(const SkLinearGradient& shader,
                                                 const ContextRec& rec)
    : INHERITED(shader, rec) {

    // Our fast path expects interval points to be monotonically increasing in x.
    const bool reverseIntervals = this->isFast() && signbit(fDstToPos.getScaleX());
    this->buildIntervals(shader, rec, reverseIntervals);

    SkASSERT(fIntervals.count() > 0);
    fCachedInterval = fIntervals.begin();
}

const SkGradientShaderBase::GradientShaderBase4fContext::Interval*
SkLinearGradient::LinearGradient4fContext::findInterval(SkScalar fx) const {
    SkASSERT(in_range(fx, fIntervals.front().fP0, fIntervals.back().fP1));

    if (1) {
        // Linear search, using the last scanline interval as a starting point.
        SkASSERT(fCachedInterval >= fIntervals.begin());
        SkASSERT(fCachedInterval < fIntervals.end());
        const int search_dir = fDstToPos.getScaleX() >= 0 ? 1 : -1;
        while (!in_range(fx, fCachedInterval->fP0, fCachedInterval->fP1)) {
            fCachedInterval += search_dir;
            if (fCachedInterval >= fIntervals.end()) {
                fCachedInterval = fIntervals.begin();
            } else if (fCachedInterval < fIntervals.begin()) {
                fCachedInterval = fIntervals.end() - 1;
            }
        }
        return fCachedInterval;
    } else {
        // Binary search.  Seems less effective than linear + caching.
        const Interval* i0 = fIntervals.begin();
        const Interval* i1 = fIntervals.end() - 1;

        while (i0 != i1) {
            SkASSERT(i0 < i1);
            SkASSERT(in_range(fx, i0->fP0, i1->fP1));

            const Interval* i = i0 + ((i1 - i0) >> 1);

            if (in_range(fx, i0->fP0, i->fP1)) {
                i1 = i;
            } else {
                SkASSERT(in_range(fx, i->fP1, i1->fP1));
                i0 = i + 1;
            }
        }

        SkASSERT(in_range(fx, i0->fP0, i0->fP1));
        return i0;
    }
}

void SkLinearGradient::
LinearGradient4fContext::shadeSpan(int x, int y, SkPMColor dst[], int count) {
    if (!this->isFast()) {
        this->INHERITED::shadeSpan(x, y, dst, count);
        return;
    }

    // TODO: plumb dithering
    SkASSERT(count > 0);
    if (fColorsArePremul) {
        this->shadePremulSpan<DstType::L32,
                              ApplyPremul::False>(x, y, dst, count);
    } else {
        this->shadePremulSpan<DstType::L32,
                              ApplyPremul::True>(x, y, dst, count);
    }
}

void SkLinearGradient::
LinearGradient4fContext::shadeSpan4f(int x, int y, SkPM4f dst[], int count) {
    if (!this->isFast()) {
        this->INHERITED::shadeSpan4f(x, y, dst, count);
        return;
    }

    // TONOTDO: plumb dithering
    SkASSERT(count > 0);
    if (fColorsArePremul) {
        this->shadePremulSpan<DstType::F32,
                              ApplyPremul::False>(x, y, dst, count);
    } else {
        this->shadePremulSpan<DstType::F32,
                              ApplyPremul::True>(x, y, dst, count);
    }
}

template<DstType dstType, ApplyPremul premul>
void SkLinearGradient::
LinearGradient4fContext::shadePremulSpan(int x, int y,
                                         typename DstTraits<dstType, premul>::Type dst[],
                                         int count) const {
    const SkLinearGradient& shader =
        static_cast<const SkLinearGradient&>(fShader);
    switch (shader.fTileMode) {
    case kClamp_TileMode:
        this->shadeSpanInternal<dstType,
                                premul,
                                kClamp_TileMode>(x, y, dst, count);
        break;
    case kRepeat_TileMode:
        this->shadeSpanInternal<dstType,
                                premul,
                                kRepeat_TileMode>(x, y, dst, count);
        break;
    case kMirror_TileMode:
        this->shadeSpanInternal<dstType,
                                premul,
                                kMirror_TileMode>(x, y, dst, count);
        break;
    }
}

template<DstType dstType, ApplyPremul premul, SkShader::TileMode tileMode>
void SkLinearGradient::
LinearGradient4fContext::shadeSpanInternal(int x, int y,
                                           typename DstTraits<dstType, premul>::Type dst[],
                                           int count) const {
    SkPoint pt;
    fDstToPosProc(fDstToPos,
                  x + SK_ScalarHalf,
                  y + SK_ScalarHalf,
                  &pt);
    const SkScalar fx = pinFx<tileMode>(pt.x());
    const SkScalar dx = fDstToPos.getScaleX();
    LinearIntervalProcessor<dstType, premul, tileMode> proc(fIntervals.begin(),
                                                            fIntervals.end() - 1,
                                                            this->findInterval(fx),
                                                            fx,
                                                            dx,
                                                            SkScalarNearlyZero(dx * count));
    while (count > 0) {
        // What we really want here is SkTPin(advance, 1, count)
        // but that's a significant perf hit for >> stops; investigate.
        const int n = SkScalarTruncToInt(
            SkTMin<SkScalar>(proc.currentAdvance() + 1, SkIntToScalar(count)));

        // The current interval advance can be +inf (e.g. when reaching
        // the clamp mode end intervals) - when that happens, we expect to
        //   a) consume all remaining count in one swoop
        //   b) return a zero color gradient
        SkASSERT(SkScalarIsFinite(proc.currentAdvance())
            || (n == count && proc.currentRampIsZero()));

        if (proc.currentRampIsZero()) {
            DstTraits<dstType, premul>::store(proc.currentColor(),
                                              dst, n);
        } else {
            ramp<dstType, premul>(proc.currentColor(),
                                  proc.currentColorGrad(),
                                  dst, n);
        }

        proc.advance(SkIntToScalar(n));
        count -= n;
        dst   += n;
    }
}

template<DstType dstType, ApplyPremul premul, SkShader::TileMode tileMode>
class SkLinearGradient::
LinearGradient4fContext::LinearIntervalProcessor {
public:
    LinearIntervalProcessor(const Interval* firstInterval,
                            const Interval* lastInterval,
                            const Interval* i,
                            SkScalar fx,
                            SkScalar dx,
                            bool is_vertical)
        : fAdvX((i->fP1 - fx) / dx)
        , fFirstInterval(firstInterval)
        , fLastInterval(lastInterval)
        , fInterval(i)
        , fDx(dx)
        , fIsVertical(is_vertical)
    {
        SkASSERT(fAdvX >= 0);
        SkASSERT(firstInterval <= lastInterval);
        SkASSERT(in_range(fx, i->fP0, i->fP1));

        if (tileMode != kClamp_TileMode && !is_vertical) {
            const auto spanX = (lastInterval->fP1 - firstInterval->fP0) / dx;
            SkASSERT(spanX >= 0);

            // If we're in a repeating tile mode and the whole gradient is compressed into a
            // fraction of a pixel, we just use the average color in zero-ramp mode.
            // This also avoids cases where we make no progress due to interval advances being
            // close to zero.
            static constexpr SkScalar kMinSpanX = .25f;
            if (spanX < kMinSpanX) {
                this->init_average_props();
                return;
            }
        }

        this->compute_interval_props(fx - i->fP0);
    }

    SkScalar currentAdvance() const {
        SkASSERT(fAdvX >= 0);
        SkASSERT(fAdvX <= (fInterval->fP1 - fInterval->fP0) / fDx || !isfinite(fAdvX));
        return fAdvX;
    }

    bool currentRampIsZero() const { return fZeroRamp; }
    const Sk4f& currentColor() const { return fCc; }
    const Sk4f& currentColorGrad() const { return fDcDx; }

    void advance(SkScalar advX) {
        SkASSERT(advX > 0);
        SkASSERT(fAdvX >= 0);

        if (advX >= fAdvX) {
            advX = this->advance_interval(advX);
        }
        SkASSERT(advX < fAdvX);

        fCc = fCc + fDcDx * Sk4f(advX);
        fAdvX -= advX;
    }

private:
    void compute_interval_props(SkScalar t) {
        fZeroRamp     = fIsVertical || fInterval->isZeroRamp();
        fCc           = DstTraits<dstType, premul>::load(fInterval->fC0);

        if (fInterval->isZeroRamp()) {
            fDcDx = 0;
        } else {
            const Sk4f dC = DstTraits<dstType, premul>::load(fInterval->fDc);
            fCc           = fCc + dC * Sk4f(t);
            fDcDx         = dC * fDx;
        }
    }

    void init_average_props() {
        fAdvX     = SK_ScalarInfinity;
        fZeroRamp = true;
        fDcDx     = 0;
        fCc       = Sk4f(0);

        // TODO: precompute the average at interval setup time?
        for (const auto* i = fFirstInterval; i <= fLastInterval; ++i) {
            // Each interval contributes its average color to the total/weighted average:
            //
            //   C = (c0 + c1) / 2 = (c0 + c0 + dc * (p1 - p0)) / 2
            //
            //   Avg += C * (p1 - p0)
            //
            const auto dp = i->fP1 - i->fP0;
            auto c = DstTraits<dstType, premul>::load(i->fC0);
            if (!i->fZeroRamp) {
                c = c + DstTraits<dstType, premul>::load(i->fDc) * dp * 0.5f;
            }
            fCc = fCc + c * dp;
        }
    }

    const Interval* next_interval(const Interval* i) const {
        SkASSERT(i >= fFirstInterval);
        SkASSERT(i <= fLastInterval);
        i++;

        if (tileMode == kClamp_TileMode) {
            SkASSERT(i <= fLastInterval);
            return i;
        }

        return (i <= fLastInterval) ? i : fFirstInterval;
    }

    SkScalar advance_interval(SkScalar advX) {
        SkASSERT(advX >= fAdvX);

        do {
            advX -= fAdvX;
            fInterval = this->next_interval(fInterval);
            fAdvX = (fInterval->fP1 - fInterval->fP0) / fDx;
            SkASSERT(fAdvX > 0);
        } while (advX >= fAdvX);

        compute_interval_props(0);

        SkASSERT(advX >= 0);
        return advX;
    }

    // Current interval properties.
    Sk4f            fDcDx;      // dst color gradient (dc/dx)
    Sk4f            fCc;        // current color, interpolated in dst
    SkScalar        fAdvX;      // remaining interval advance in dst
    bool            fZeroRamp;  // current interval color grad is 0

    const Interval* fFirstInterval;
    const Interval* fLastInterval;
    const Interval* fInterval;  // current interval
    const SkScalar  fDx;        // 'dx' for consistency with other impls; actually dt/dx
    const bool      fIsVertical;
};

void SkLinearGradient::
LinearGradient4fContext::mapTs(int x, int y, SkScalar ts[], int count) const {
    SkASSERT(count > 0);
    SkASSERT(fDstToPosClass != kLinear_MatrixClass);

    SkScalar sx = x + SK_ScalarHalf;
    const SkScalar sy = y + SK_ScalarHalf;
    SkPoint pt;

    if (fDstToPosClass != kPerspective_MatrixClass) {
        // kLinear_MatrixClass, kFixedStepInX_MatrixClass => fixed dt per scanline
        const SkScalar dtdx = fDstToPos.fixedStepInX(sy).x();
        fDstToPosProc(fDstToPos, sx, sy, &pt);

        const Sk4f dtdx4 = Sk4f(4 * dtdx);
        Sk4f t4 = Sk4f(pt.x() + 0 * dtdx,
                       pt.x() + 1 * dtdx,
                       pt.x() + 2 * dtdx,
                       pt.x() + 3 * dtdx);

        while (count >= 4) {
            t4.store(ts);
            t4 = t4 + dtdx4;
            ts += 4;
            count -= 4;
        }

        if (count & 2) {
            *ts++ = t4[0];
            *ts++ = t4[1];
            t4 = SkNx_shuffle<2, 0, 1, 3>(t4);
        }

        if (count & 1) {
            *ts++ = t4[0];
        }
    } else {
        for (int i = 0; i < count; ++i) {
            fDstToPosProc(fDstToPos, sx, sy, &pt);
            ts[i] = pt.x();
            sx += SK_Scalar1;
        }
    }
}

bool SkLinearGradient::LinearGradient4fContext::onChooseBlitProcs(const SkImageInfo& info,
                                                                  BlitState* state) {
    SkXfermode::Mode mode;
    if (!SkXfermode::AsMode(state->fXfer, &mode)) {
        return false;
    }

    if (mode != SkXfermode::kSrc_Mode &&
        !(mode == SkXfermode::kSrcOver_Mode && (fFlags & kOpaqueAlpha_Flag))) {
        return false;
    }

    switch (info.colorType()) {
        case kN32_SkColorType:
            state->fBlitBW = D32_BlitBW;
            return true;
        case kRGBA_F16_SkColorType:
            state->fBlitBW = D64_BlitBW;
            return true;
        default:
            return false;
    }
}

void SkLinearGradient::
LinearGradient4fContext::D32_BlitBW(BlitState* state, int x, int y, const SkPixmap& dst,
                                    int count) {
    // FIXME: ignoring coverage for now
    const LinearGradient4fContext* ctx =
        static_cast<const LinearGradient4fContext*>(state->fCtx);

    if (!dst.info().gammaCloseToSRGB()) {
        if (ctx->fColorsArePremul) {
            ctx->shadePremulSpan<DstType::L32, ApplyPremul::False>(
                x, y, dst.writable_addr32(x, y), count);
        } else {
            ctx->shadePremulSpan<DstType::L32, ApplyPremul::True>(
                x, y, dst.writable_addr32(x, y), count);
        }
    } else {
        if (ctx->fColorsArePremul) {
            ctx->shadePremulSpan<DstType::S32, ApplyPremul::False>(
                x, y, dst.writable_addr32(x, y), count);
        } else {
            ctx->shadePremulSpan<DstType::S32, ApplyPremul::True>(
                x, y, dst.writable_addr32(x, y), count);
        }
    }
}

void SkLinearGradient::
LinearGradient4fContext::D64_BlitBW(BlitState* state, int x, int y, const SkPixmap& dst,
                                    int count) {
    // FIXME: ignoring coverage for now
    const LinearGradient4fContext* ctx =
        static_cast<const LinearGradient4fContext*>(state->fCtx);

    if (ctx->fColorsArePremul) {
        ctx->shadePremulSpan<DstType::F16, ApplyPremul::False>(
            x, y, dst.writable_addr64(x, y), count);
    } else {
        ctx->shadePremulSpan<DstType::F16, ApplyPremul::True>(
            x, y, dst.writable_addr64(x, y), count);
    }
}