aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/effects/gradients/Sk4fGradientBase.cpp
blob: e234e9bc36cd72ed20ca847f0fdc55b4e5cf6e78 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
/*
 * Copyright 2016 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "Sk4fGradientBase.h"

#include <functional>

namespace {

Sk4f pack_color(SkColor c, bool premul, const Sk4f& component_scale) {
    const SkColor4f c4f = SkColor4f::FromColor(c);
    const Sk4f pm4f = premul
        ? c4f.premul().to4f()
        : Sk4f{c4f.fR, c4f.fG, c4f.fB, c4f.fA};

    return pm4f * component_scale;
}

class IntervalIterator {
public:
    IntervalIterator(const SkColor* colors, const SkScalar* pos, int count, bool reverse)
        : fColors(colors)
        , fPos(pos)
        , fCount(count)
        , fFirstPos(reverse ? SK_Scalar1 : 0)
        , fBegin(reverse ? count - 1 : 0)
        , fAdvance(reverse ? -1 : 1) {
        SkASSERT(colors);
        SkASSERT(count > 0);
    }

    void iterate(std::function<void(SkColor, SkColor, SkScalar, SkScalar)> func) const {
        if (!fPos) {
            this->iterateImplicitPos(func);
            return;
        }

        const int end = fBegin + fAdvance * (fCount - 1);
        const SkScalar lastPos = 1 - fFirstPos;
        int prev = fBegin;
        SkScalar prevPos = fFirstPos;

        do {
            const int curr = prev + fAdvance;
            SkASSERT(curr >= 0 && curr < fCount);

            // TODO: this sanitization should be done in SkGradientShaderBase
            const SkScalar currPos = (fAdvance > 0)
                ? SkTPin(fPos[curr], prevPos, lastPos)
                : SkTPin(fPos[curr], lastPos, prevPos);

            if (currPos != prevPos) {
                SkASSERT((currPos - prevPos > 0) == (fAdvance > 0));
                func(fColors[prev], fColors[curr], prevPos, currPos);
            }

            prev = curr;
            prevPos = currPos;
        } while (prev != end);
    }

private:
    void iterateImplicitPos(std::function<void(SkColor, SkColor, SkScalar, SkScalar)> func) const {
        // When clients don't provide explicit color stop positions (fPos == nullptr),
        // the color stops are distributed evenly across the unit interval
        // (implicit positioning).
        const SkScalar dt = fAdvance * SK_Scalar1 / (fCount - 1);
        const int end = fBegin + fAdvance * (fCount - 2);
        int prev = fBegin;
        SkScalar prevPos = fFirstPos;

        while (prev != end) {
            const int curr = prev + fAdvance;
            SkASSERT(curr >= 0 && curr < fCount);

            const SkScalar currPos = prevPos + dt;
            func(fColors[prev], fColors[curr], prevPos, currPos);
            prev = curr;
            prevPos = currPos;
        }

        // emit the last interval with a pinned end position, to avoid precision issues
        func(fColors[prev], fColors[prev + fAdvance], prevPos, 1 - fFirstPos);
    }

    const SkColor*  fColors;
    const SkScalar* fPos;
    const int       fCount;
    const SkScalar  fFirstPos;
    const int       fBegin;
    const int       fAdvance;
};

} // anonymous namespace

SkGradientShaderBase::GradientShaderBase4fContext::
Interval::Interval(const Sk4f& c0, SkScalar p0,
                   const Sk4f& c1, SkScalar p1)
    : fP0(p0)
    , fP1(p1)
    , fZeroRamp((c0 == c1).allTrue()) {
    SkASSERT(p0 != p1);
    // Either p0 or p1 can be (-)inf for synthetic clamp edge intervals.
    SkASSERT(SkScalarIsFinite(p0) || SkScalarIsFinite(p1));

    const auto dp = p1 - p0;

    // Clamp edge intervals are always zero-ramp.
    SkASSERT(SkScalarIsFinite(dp) || fZeroRamp);
    const Sk4f dc = SkScalarIsFinite(dp) ? (c1 - c0) / dp : 0;

    c0.store(&fC0.fVec);
    dc.store(&fDc.fVec);
}

SkGradientShaderBase::
GradientShaderBase4fContext::GradientShaderBase4fContext(const SkGradientShaderBase& shader,
                                                         const ContextRec& rec)
    : INHERITED(shader, rec)
    , fFlags(this->INHERITED::getFlags())
#ifdef SK_SUPPORT_LEGACY_GRADIENT_DITHERING
    , fDither(true)
#else
    , fDither(rec.fPaint->isDither())
#endif
{
    const SkMatrix& inverse = this->getTotalInverse();
    fDstToPos.setConcat(shader.fPtsToUnit, inverse);
    fDstToPosProc = fDstToPos.getMapXYProc();
    fDstToPosClass = static_cast<uint8_t>(INHERITED::ComputeMatrixClass(fDstToPos));

    if (shader.fColorsAreOpaque && this->getPaintAlpha() == SK_AlphaOPAQUE) {
        fFlags |= kOpaqueAlpha_Flag;
    }

    fColorsArePremul =
        (shader.fGradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag)
        || shader.fColorsAreOpaque;
}

bool SkGradientShaderBase::
GradientShaderBase4fContext::isValid() const {
    return fDstToPos.isFinite();
}

void SkGradientShaderBase::
GradientShaderBase4fContext::buildIntervals(const SkGradientShaderBase& shader,
                                            const ContextRec& rec, bool reverse) {
    // The main job here is to build a specialized interval list: a different
    // representation of the color stops data, optimized for efficient scan line
    // access during shading.
    //
    //   [{P0,C0} , {P1,C1}) [{P1,C2} , {P2,c3}) ... [{Pn,C2n} , {Pn+1,C2n+1})
    //
    // The list may be inverted when requested (such that e.g. points are sorted
    // in increasing x order when dx < 0).
    //
    // Note: the current representation duplicates pos data; we could refactor to
    //       avoid this if interval storage size becomes a concern.
    //
    // Aside from reordering, we also perform two more pre-processing steps at
    // this stage:
    //
    //   1) scale the color components depending on paint alpha and the requested
    //      interpolation space (note: the interval color storage is SkPM4f, but
    //      that doesn't necessarily mean the colors are premultiplied; that
    //      property is tracked in fColorsArePremul)
    //
    //   2) inject synthetic intervals to support tiling.
    //
    //      * for kRepeat, no extra intervals are needed - the iterator just
    //        wraps around at the end:
    //
    //          ->[P0,P1)->..[Pn-1,Pn)->
    //
    //      * for kClamp, we add two "infinite" intervals before/after:
    //
    //          [-/+inf , P0)->[P0 , P1)->..[Pn-1 , Pn)->[Pn , +/-inf)
    //
    //        (the iterator should never run off the end in this mode)
    //
    //      * for kMirror, we extend the range to [0..2] and add a flipped
    //        interval series - then the iterator operates just as in the
    //        kRepeat case:
    //
    //          ->[P0,P1)->..[Pn-1,Pn)->[2 - Pn,2 - Pn-1)->..[2 - P1,2 - P0)->
    //
    // TODO: investigate collapsing intervals << 1px.

    SkASSERT(shader.fColorCount > 0);
    SkASSERT(shader.fOrigColors);

    const float paintAlpha = rec.fPaint->getAlpha() * (1.0f / 255);
    const Sk4f componentScale = fColorsArePremul
        ? Sk4f(paintAlpha)
        : Sk4f(1.0f, 1.0f, 1.0f, paintAlpha);
    const int first_index = reverse ? shader.fColorCount - 1 : 0;
    const int last_index = shader.fColorCount - 1 - first_index;
    const SkScalar first_pos = reverse ? SK_Scalar1 : 0;
    const SkScalar last_pos = SK_Scalar1 - first_pos;

    if (shader.fTileMode == SkShader::kClamp_TileMode) {
        // synthetic edge interval: -/+inf .. P0
        const Sk4f clamp_color = pack_color(shader.fOrigColors[first_index],
                                            fColorsArePremul, componentScale);
        const SkScalar clamp_pos = reverse ? SK_ScalarInfinity : SK_ScalarNegativeInfinity;
        fIntervals.emplace_back(clamp_color, clamp_pos,
                                clamp_color, first_pos);
    } else if (shader.fTileMode == SkShader::kMirror_TileMode && reverse) {
        // synthetic mirror intervals injected before main intervals: (2 .. 1]
        addMirrorIntervals(shader, componentScale, false);
    }

    const IntervalIterator iter(shader.fOrigColors,
                                shader.fOrigPos,
                                shader.fColorCount,
                                reverse);
    iter.iterate([this, &componentScale] (SkColor c0, SkColor c1, SkScalar p0, SkScalar p1) {
        SkASSERT(fIntervals.empty() || fIntervals.back().fP1 == p0);

        fIntervals.emplace_back(pack_color(c0, fColorsArePremul, componentScale),
                                p0,
                                pack_color(c1, fColorsArePremul, componentScale),
                                p1);
    });

    if (shader.fTileMode == SkShader::kClamp_TileMode) {
        // synthetic edge interval: Pn .. +/-inf
        const Sk4f clamp_color = pack_color(shader.fOrigColors[last_index],
                                            fColorsArePremul, componentScale);
        const SkScalar clamp_pos = reverse ? SK_ScalarNegativeInfinity : SK_ScalarInfinity;
        fIntervals.emplace_back(clamp_color, last_pos,
                                clamp_color, clamp_pos);
    } else if (shader.fTileMode == SkShader::kMirror_TileMode && !reverse) {
        // synthetic mirror intervals injected after main intervals: [1 .. 2)
        addMirrorIntervals(shader, componentScale, true);
    }
}

void SkGradientShaderBase::
GradientShaderBase4fContext::addMirrorIntervals(const SkGradientShaderBase& shader,
                                            const Sk4f& componentScale, bool reverse) {
    const IntervalIterator iter(shader.fOrigColors,
                                shader.fOrigPos,
                                shader.fColorCount,
                                reverse);
    iter.iterate([this, &componentScale] (SkColor c0, SkColor c1, SkScalar p0, SkScalar p1) {
        SkASSERT(fIntervals.empty() || fIntervals.back().fP1 == 2 - p0);

        const auto mirror_p0 = 2 - p0;
        const auto mirror_p1 = 2 - p1;
        // mirror_p1 & mirror_p1 may collapse for very small values - recheck to avoid
        // triggering Interval asserts.
        if (mirror_p0 != mirror_p1) {
            fIntervals.emplace_back(pack_color(c0, fColorsArePremul, componentScale),
                                    mirror_p0,
                                    pack_color(c1, fColorsArePremul, componentScale),
                                    mirror_p1);
        }
    });
}

void SkGradientShaderBase::
GradientShaderBase4fContext::shadeSpan(int x, int y, SkPMColor dst[], int count) {
    if (fColorsArePremul) {
        this->shadePremulSpan<DstType::L32, ApplyPremul::False>(x, y, dst, count);
    } else {
        this->shadePremulSpan<DstType::L32, ApplyPremul::True>(x, y, dst, count);
    }
}

void SkGradientShaderBase::
GradientShaderBase4fContext::shadeSpan4f(int x, int y, SkPM4f dst[], int count) {
    if (fColorsArePremul) {
        this->shadePremulSpan<DstType::F32, ApplyPremul::False>(x, y, dst, count);
    } else {
        this->shadePremulSpan<DstType::F32, ApplyPremul::True>(x, y, dst, count);
    }
}

template<DstType dstType, ApplyPremul premul>
void SkGradientShaderBase::
GradientShaderBase4fContext::shadePremulSpan(int x, int y,
                                             typename DstTraits<dstType, premul>::Type dst[],
                                             int count) const {
    const SkGradientShaderBase& shader =
        static_cast<const SkGradientShaderBase&>(fShader);

    switch (shader.fTileMode) {
    case kClamp_TileMode:
        this->shadeSpanInternal<dstType,
                                premul,
                                kClamp_TileMode>(x, y, dst, count);
        break;
    case kRepeat_TileMode:
        this->shadeSpanInternal<dstType,
                                premul,
                                kRepeat_TileMode>(x, y, dst, count);
        break;
    case kMirror_TileMode:
        this->shadeSpanInternal<dstType,
                                premul,
                                kMirror_TileMode>(x, y, dst, count);
        break;
    }
}

template<DstType dstType, ApplyPremul premul, SkShader::TileMode tileMode>
void SkGradientShaderBase::
GradientShaderBase4fContext::shadeSpanInternal(int x, int y,
                                               typename DstTraits<dstType, premul>::Type dst[],
                                               int count) const {
    static const int kBufSize = 128;
    SkScalar ts[kBufSize];
    TSampler<dstType, premul, tileMode> sampler(*this);

    SkASSERT(count > 0);
    do {
        const int n = SkTMin(kBufSize, count);
        this->mapTs(x, y, ts, n);
        for (int i = 0; i < n; ++i) {
            const Sk4f c = sampler.sample(ts[i]);
            DstTraits<dstType, premul>::store(c, dst++);
        }
        x += n;
        count -= n;
    } while (count > 0);
}

template<DstType dstType, ApplyPremul premul, SkShader::TileMode tileMode>
class SkGradientShaderBase::GradientShaderBase4fContext::TSampler {
public:
    TSampler(const GradientShaderBase4fContext& ctx)
        : fFirstInterval(ctx.fIntervals.begin())
        , fLastInterval(ctx.fIntervals.end() - 1)
        , fInterval(nullptr) {
        SkASSERT(fLastInterval >= fFirstInterval);
        switch (tileMode) {
        case kClamp_TileMode:
            fLargestIntervalValue = SK_ScalarInfinity;
            break;
        case kRepeat_TileMode:
            fLargestIntervalValue = nextafterf(1, 0);
            break;
        case kMirror_TileMode:
            fLargestIntervalValue = nextafterf(2.0f, 0);
            break;
        }
    }

    Sk4f sample(SkScalar t) {
        const auto tiled_t = tileProc(t);

        if (!fInterval) {
            // Very first sample => locate the initial interval.
            // TODO: maybe do this in ctor to remove a branch?
            fInterval = this->findFirstInterval(tiled_t);
            this->loadIntervalData(fInterval);
        } else if (!fInterval->contains(tiled_t)) {
            fInterval = this->findNextInterval(t, tiled_t);
            this->loadIntervalData(fInterval);
        }

        fPrevT = t;
        return lerp(tiled_t);
    }

private:
    SkScalar tileProc(SkScalar t) const {
        switch (tileMode) {
        case kClamp_TileMode:
            // synthetic clamp-mode edge intervals allow for a free-floating t:
            //   [-inf..0)[0..1)[1..+inf)
            return t;
        case kRepeat_TileMode:
            // t % 1  (intervals range: [0..1))
            // Due to the extra arithmetic, we must clamp to ensure the value remains less than 1.
            return SkTMin(t - SkScalarFloorToScalar(t), fLargestIntervalValue);
        case kMirror_TileMode:
            // t % 2  (synthetic mirror intervals expand the range to [0..2)
            // Due to the extra arithmetic, we must clamp to ensure the value remains less than 2.
            return SkTMin(t - SkScalarFloorToScalar(t / 2) * 2, fLargestIntervalValue);
        }

        SK_ABORT("Unhandled tile mode.");
        return 0;
    }

    Sk4f lerp(SkScalar t) {
        SkASSERT(fInterval->contains(t));
        return fCc + fDc * (t - fInterval->fP0);
    }

    const Interval* findFirstInterval(SkScalar t) const {
        // Binary search.
        const Interval* i0 = fFirstInterval;
        const Interval* i1 = fLastInterval;

        while (i0 != i1) {
            SkASSERT(i0 < i1);
            SkASSERT(t >= i0->fP0 && t <= i1->fP1);

            const Interval* i = i0 + ((i1 - i0) >> 1);

            if (t > i->fP1) {
                i0 = i + 1;
            } else {
                i1 = i;
            }
        }

        SkASSERT(i0->contains(t));
        return i0;
    }

    const Interval* findNextInterval(SkScalar t, SkScalar tiled_t) const {
        SkASSERT(!fInterval->contains(tiled_t));
        SkASSERT(tiled_t >= fFirstInterval->fP0 && tiled_t <= fLastInterval->fP1);

        const Interval* i = fInterval;

        // Use the t vs. prev_t signal to figure which direction we should search for
        // the next interval, then perform a linear search.
        if (t >= fPrevT) {
            do {
                i += 1;
                if (i > fLastInterval) {
                    i = fFirstInterval;
                }
            } while (!i->contains(tiled_t));
        } else {
            do {
                i -= 1;
                if (i < fFirstInterval) {
                    i = fLastInterval;
                }
            } while (!i->contains(tiled_t));
        }

        return i;
    }

    void loadIntervalData(const Interval* i) {
        fCc = DstTraits<dstType, premul>::load(i->fC0);
        fDc = DstTraits<dstType, premul>::load(i->fDc);
    }

    const Interval* fFirstInterval;
    const Interval* fLastInterval;
    const Interval* fInterval;
    SkScalar        fPrevT;
    SkScalar        fLargestIntervalValue;
    Sk4f            fCc;
    Sk4f            fDc;
};