1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
|
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkRRectsGaussianEdgeMaskFilter.h"
#include "SkReadBuffer.h"
#include "SkRRect.h"
#include "SkWriteBuffer.h"
#if SK_SUPPORT_GPU
#include "GrFragmentProcessor.h"
#endif
/** \class SkRRectsGaussianEdgeMaskFilterImpl
* This mask filter applies a gaussian edge to the intersection of two round rects.
* The round rects must have the same radii at each corner and the x&y radii
* must also be equal.
*/
class SkRRectsGaussianEdgeMaskFilterImpl : public SkMaskFilter {
public:
SkRRectsGaussianEdgeMaskFilterImpl(const SkRRect& first, const SkRRect& second,
SkScalar radius)
: fFirst(first)
, fSecond(second)
, fRadius(radius) {
}
SkMask::Format getFormat() const override { return SkMask::kA8_Format; }
bool filterMask(SkMask* dst, const SkMask& src, const SkMatrix&,
SkIPoint* margin) const override;
#if SK_SUPPORT_GPU
bool asFragmentProcessor(GrFragmentProcessor**) const override;
#endif
SK_TO_STRING_OVERRIDE()
SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkRRectsGaussianEdgeMaskFilterImpl)
protected:
void flatten(SkWriteBuffer&) const override;
private:
SkRRect fFirst;
SkRRect fSecond;
SkScalar fRadius;
friend class SkRRectsGaussianEdgeMaskFilter; // for serialization registration system
typedef SkMaskFilter INHERITED;
};
// x & y are in device space
static SkScalar compute_rrect_normalized_dist(const SkRRect& rr, const SkPoint& p, SkScalar rad) {
SkASSERT(rr.getType() == SkRRect::kOval_Type || rr.getType() == SkRRect::kRect_Type ||
rr.getType() == SkRRect::kSimple_Type);
SkASSERT(rad > 0.0f);
SkVector delta = { SkTAbs(p.fX - rr.rect().centerX()), SkTAbs(p.fY - rr.rect().centerY()) };
SkScalar halfW = 0.5f * rr.rect().width();
SkScalar halfH = 0.5f * rr.rect().height();
SkScalar invRad = 1.0f/rad;
const SkVector& radii = rr.getSimpleRadii();
SkASSERT(SkScalarNearlyEqual(radii.fX, radii.fY));
switch (rr.getType()) {
case SkRRect::kOval_Type: {
float scaledDist = delta.length() * invRad;
return SkTPin(halfW * invRad - scaledDist, 0.0f, 1.0f);
}
case SkRRect::kRect_Type: {
SkScalar xDist = (halfW - delta.fX) * invRad;
SkScalar yDist = (halfH - delta.fY) * invRad;
SkVector v = { 1.0f - SkTPin(xDist, 0.0f, 1.0f), 1.0f - SkTPin(yDist, 0.0f, 1.0f) };
return SkTPin(1.0f - v.length(), 0.0f, 1.0f);
}
case SkRRect::kSimple_Type: {
//----------------
// ice-cream-cone fractional distance computation
// When the blurRadius is larger than the corner radius we want to use it to
// compute the pointy end of the ice cream cone. If it smaller we just want to use
// the center of the corner's circle. When using the blurRadius the inset amount
// can't exceed the halfwidths of the RRect.
SkScalar insetDist = SkTMin(SkTMax(rad, radii.fX), SkTMin(halfW, halfH));
// "maxValue" is a correction term for if the blurRadius is larger than the
// size of the RRect. In that case we don't want to go all the way to black.
SkScalar maxValue = insetDist * invRad;
SkVector coneBottom = { halfW - insetDist, halfH - insetDist };
SkVector ptInConeSpace = delta - coneBottom;
SkVector cornerTop = { halfW - radii.fX - coneBottom.fX, halfH - coneBottom.fY };
SkVector cornerRight = { halfW - coneBottom.fX, halfH - radii.fY - coneBottom.fY };
SkScalar cross1 = ptInConeSpace.cross(cornerTop);
SkScalar cross2 = cornerRight.cross(ptInConeSpace);
bool inCone = cross1 > 0.0f && cross2 > 0.0f;
if (!inCone) {
SkScalar xDist = (halfW - delta.fX) * invRad;
SkScalar yDist = (halfH - delta.fY) * invRad;
return SkTPin(SkTMin(xDist, yDist), 0.0f, 1.0f); // perpendicular distance
}
SkVector cornerCenterInConeSpace = { insetDist - radii.fX, insetDist - radii.fY };
SkVector connectingVec = ptInConeSpace - cornerCenterInConeSpace;
float distToPtInConeSpace = SkPoint::Normalize(&ptInConeSpace);
// "a" (i.e., dot(ptInConeSpace, ptInConeSpace) should always be 1.0f since
// ptInConeSpace is now normalized
SkScalar b = 2.0f * ptInConeSpace.dot(connectingVec);
SkScalar c = connectingVec.dot(connectingVec) - radii.fX * radii.fY;
// lop off negative values that are outside the cone
SkScalar coneDist = SkTMax(0.0f, 0.5f * (-b + SkScalarSqrt(b*b - 4*c)));
// make the coneDist a fraction of how far it is from the edge to the cone's base
coneDist = (maxValue*coneDist) / (coneDist+distToPtInConeSpace);
return SkTPin(coneDist, 0.0f, 1.0f);
}
default:
return 0.0f;
}
}
bool SkRRectsGaussianEdgeMaskFilterImpl::filterMask(SkMask* dst, const SkMask& src,
const SkMatrix& matrix,
SkIPoint* margin) const {
if (src.fFormat != SkMask::kA8_Format) {
return false;
}
if (margin) {
margin->set(0, 0);
}
dst->fBounds = src.fBounds;
dst->fRowBytes = dst->fBounds.width();
dst->fFormat = SkMask::kA8_Format;
dst->fImage = nullptr;
if (src.fImage) {
size_t dstSize = dst->computeImageSize();
if (0 == dstSize) {
return false; // too big to allocate, abort
}
const uint8_t* srcPixels = src.fImage;
uint8_t* dstPixels = dst->fImage = SkMask::AllocImage(dstSize);
SkPoint basePt = { SkIntToScalar(src.fBounds.fLeft), SkIntToScalar(src.fBounds.fTop) };
for (int y = 0; y < dst->fBounds.height(); ++y) {
const uint8_t* srcRow = srcPixels + y * dst->fRowBytes;
uint8_t* dstRow = dstPixels + y*dst->fRowBytes;
for (int x = 0; x < dst->fBounds.width(); ++x) {
SkPoint curPt = { basePt.fX + x, basePt.fY + y };
SkVector vec;
vec.fX = 1.0f - compute_rrect_normalized_dist(fFirst, curPt, fRadius);
vec.fY = 1.0f - compute_rrect_normalized_dist(fSecond, curPt, fRadius);
SkScalar factor = SkTPin(vec.length(), 0.0f, 1.0f);
factor = exp(-factor * factor * 4.0f) - 0.018f;
SkASSERT(factor >= 0.0f && factor <= 1.0f);
dstRow[x] = (uint8_t) (factor * srcRow[x]);
}
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
#include "GrCoordTransform.h"
#include "GrFragmentProcessor.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"
#include "SkGr.h"
class RRectsGaussianEdgeFP : public GrFragmentProcessor {
public:
enum Mode {
kCircle_Mode,
kRect_Mode,
kSimpleCircular_Mode,
};
static sk_sp<GrFragmentProcessor> Make(const SkRRect& first, const SkRRect& second,
SkScalar radius) {
return sk_sp<GrFragmentProcessor>(new RRectsGaussianEdgeFP(first, second, radius));
}
class GLSLRRectsGaussianEdgeFP : public GrGLSLFragmentProcessor {
public:
GLSLRRectsGaussianEdgeFP() { }
// This method emits code so that, for each shape, the distance from the edge is returned
// in 'outputName' clamped to 0..1 with positive distance being towards the center of the
// shape. The distance will have been normalized by the radius.
void emitModeCode(Mode mode,
GrGLSLFPFragmentBuilder* fragBuilder,
const char* posName,
const char* sizesName,
const char* radiiName,
const char* radName,
const char* outputName,
const char indices[2]) { // how to access the params for the 2 rrects
// Positive distance is towards the center of the circle.
// Map all the cases to the lower right quadrant.
fragBuilder->codeAppendf("vec2 delta = abs(sk_FragCoord.xy - %s.%s);",
posName, indices);
switch (mode) {
case kCircle_Mode:
// When a shadow circle gets large we can have some precision issues if
// we do "length(delta)/radius". The scaleDist temporary cuts the
// delta vector down a bit before invoking length.
fragBuilder->codeAppendf("float scaledDist = length(delta/%s);", radName);
fragBuilder->codeAppendf("%s = clamp((%s.%c/%s - scaledDist), 0.0, 1.0);",
outputName, sizesName, indices[0], radName);
break;
case kRect_Mode:
fragBuilder->codeAppendf(
"vec2 rectDist = vec2(1.0 - clamp((%s.%c - delta.x)/%s, 0.0, 1.0),"
"1.0 - clamp((%s.%c - delta.y)/%s, 0.0, 1.0));",
sizesName, indices[0], radName,
sizesName, indices[1], radName);
fragBuilder->codeAppendf("%s = clamp(1.0 - length(rectDist), 0.0, 1.0);",
outputName);
break;
case kSimpleCircular_Mode:
// For the circular round rect we combine 2 distances:
// the fractional position from the corner inset point to the corner's circle
// the minimum perpendicular distance to the bounding rectangle
// The first distance is used when the pixel is inside the ice-cream-cone-shaped
// portion of a corner. The second is used everywhere else.
// This is intended to approximate the interpolation pattern if we had
// tessellated this geometry into a RRect outside and a rect inside.
//----------------
// rect distance computation
fragBuilder->codeAppendf("float xDist = (%s.%c - delta.x) / %s;",
sizesName, indices[0], radName);
fragBuilder->codeAppendf("float yDist = (%s.%c - delta.y) / %s;",
sizesName, indices[1], radName);
fragBuilder->codeAppend("float rectDist = clamp(min(xDist, yDist), 0.0, 1.0);");
//----------------
// ice-cream-cone fractional distance computation
// When the blurRadius is larger than the corner radius we want to use it to
// compute the pointy end of the ice cream cone. If it smaller we just want to
// use the center of the corner's circle. When using the blurRadius the inset
// amount can't exceed the halfwidths of the RRect.
fragBuilder->codeAppendf("float insetDist = min(max(%s, %s.%c),"
"min(%s.%c, %s.%c));",
radName, radiiName, indices[0],
sizesName, indices[0], sizesName, indices[1]);
// "maxValue" is a correction term for if the blurRadius is larger than the
// size of the RRect. In that case we don't want to go all the way to black.
fragBuilder->codeAppendf("float maxValue = insetDist/%s;", radName);
fragBuilder->codeAppendf("vec2 coneBottom = vec2(%s.%c - insetDist,"
"%s.%c - insetDist);",
sizesName, indices[0], sizesName, indices[1]);
fragBuilder->codeAppendf("vec2 cornerTop = vec2(%s.%c - %s.%c, %s.%c) -"
"coneBottom;",
sizesName, indices[0], radiiName, indices[0],
sizesName, indices[1]);
fragBuilder->codeAppendf("vec2 cornerRight = vec2(%s.%c, %s.%c - %s.%c) -"
"coneBottom;",
sizesName, indices[0],
sizesName, indices[1], radiiName, indices[1]);
fragBuilder->codeAppend("vec2 ptInConeSpace = delta - coneBottom;");
fragBuilder->codeAppend("float distToPtInConeSpace = length(ptInConeSpace);");
fragBuilder->codeAppend("float cross1 = ptInConeSpace.x * cornerTop.y -"
"ptInConeSpace.y * cornerTop.x;");
fragBuilder->codeAppend("float cross2 = -ptInConeSpace.x * cornerRight.y + "
"ptInConeSpace.y * cornerRight.x;");
fragBuilder->codeAppend("float inCone = step(0.0, cross1) *"
"step(0.0, cross2);");
fragBuilder->codeAppendf("vec2 cornerCenterInConeSpace = vec2(insetDist -"
"%s.%c);",
radiiName, indices[0]);
fragBuilder->codeAppend("vec2 connectingVec = ptInConeSpace -"
"cornerCenterInConeSpace;");
fragBuilder->codeAppend("ptInConeSpace = normalize(ptInConeSpace);");
// "a" (i.e., dot(ptInConeSpace, ptInConeSpace) should always be 1.0f since
// ptInConeSpace is now normalized
fragBuilder->codeAppend("float b = 2.0 * dot(ptInConeSpace, connectingVec);");
fragBuilder->codeAppendf("float c = dot(connectingVec, connectingVec) - "
"%s.%c * %s.%c;",
radiiName, indices[0], radiiName, indices[0]);
fragBuilder->codeAppend("float fourAC = 4*c;");
// This max prevents sqrt(-1) when outside the cone
fragBuilder->codeAppend("float bSq = max(b*b, fourAC);");
// lop off negative values that are outside the cone
fragBuilder->codeAppend("float coneDist = "
"max(0.0, 0.5 * (-b + sqrt(bSq - fourAC)));");
// make the coneDist a fraction of how far it is from the edge to the
// cone's base
fragBuilder->codeAppend("coneDist = (maxValue*coneDist) /"
"(coneDist+distToPtInConeSpace);");
fragBuilder->codeAppend("coneDist = clamp(coneDist, 0.0, 1.0);");
//----------------
fragBuilder->codeAppendf("%s = mix(rectDist, coneDist, inCone);", outputName);
break;
}
}
void emitCode(EmitArgs& args) override {
const RRectsGaussianEdgeFP& fp = args.fFp.cast<RRectsGaussianEdgeFP>();
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
const char* positionsUniName = nullptr;
fPositionsUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"Positions", &positionsUniName);
const char* sizesUniName = nullptr;
fSizesUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"Sizes", &sizesUniName);
const char* radiiUniName = nullptr;
if (fp.fFirstMode == kSimpleCircular_Mode || fp.fSecondMode == kSimpleCircular_Mode) {
fRadiiUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"Radii", &radiiUniName);
}
const char* radUniName = nullptr;
fRadiusUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kFloat_GrSLType, kDefault_GrSLPrecision,
"Radius", &radUniName);
fragBuilder->codeAppend("float firstDist;");
fragBuilder->codeAppend("{");
this->emitModeCode(fp.firstMode(), fragBuilder,
positionsUniName, sizesUniName, radiiUniName,
radUniName, "firstDist", "xy");
fragBuilder->codeAppend("}");
fragBuilder->codeAppend("float secondDist;");
fragBuilder->codeAppend("{");
this->emitModeCode(fp.secondMode(), fragBuilder,
positionsUniName, sizesUniName, radiiUniName,
radUniName, "secondDist", "zw");
fragBuilder->codeAppend("}");
fragBuilder->codeAppend("vec2 distVec = vec2(1.0 - firstDist, 1.0 - secondDist);");
// Finally use the distance to apply the Gaussian edge
fragBuilder->codeAppend("float factor = clamp(length(distVec), 0.0, 1.0);");
fragBuilder->codeAppend("factor = exp(-factor * factor * 4.0) - 0.018;");
fragBuilder->codeAppendf("%s = factor*%s;",
args.fOutputColor, args.fInputColor);
}
static void GenKey(const GrProcessor& proc, const GrShaderCaps&, GrProcessorKeyBuilder* b) {
const RRectsGaussianEdgeFP& fp = proc.cast<RRectsGaussianEdgeFP>();
b->add32(fp.firstMode() | (fp.secondMode() << 4));
}
protected:
void onSetData(const GrGLSLProgramDataManager& pdman,
const GrFragmentProcessor& proc) override {
const RRectsGaussianEdgeFP& edgeFP = proc.cast<RRectsGaussianEdgeFP>();
const SkRRect& first = edgeFP.first();
const SkRRect& second = edgeFP.second();
pdman.set4f(fPositionsUni,
first.getBounds().centerX(),
first.getBounds().centerY(),
second.getBounds().centerX(),
second.getBounds().centerY());
pdman.set4f(fSizesUni,
0.5f * first.rect().width(),
0.5f * first.rect().height(),
0.5f * second.rect().width(),
0.5f * second.rect().height());
if (edgeFP.firstMode() == kSimpleCircular_Mode ||
edgeFP.secondMode() == kSimpleCircular_Mode) {
// This is a bit of overkill since fX should equal fY for both round rects but it
// makes the shader code simpler.
pdman.set4f(fRadiiUni,
first.getSimpleRadii().fX, first.getSimpleRadii().fY,
second.getSimpleRadii().fX, second.getSimpleRadii().fY);
}
pdman.set1f(fRadiusUni, edgeFP.radius());
}
private:
// The centers of the two round rects (x1, y1, x2, y2)
GrGLSLProgramDataManager::UniformHandle fPositionsUni;
// The half widths and half heights of the two round rects (w1/2, h1/2, w2/2, h2/2)
// For circles we still upload both width & height to simplify things
GrGLSLProgramDataManager::UniformHandle fSizesUni;
// The corner radii of the two round rects (rx1, ry1, rx2, ry2)
// We upload both the x&y radii (although they are currently always the same) to make
// the indexing in the shader code simpler. In some future world we could also support
// non-circular corner round rects & ellipses.
GrGLSLProgramDataManager::UniformHandle fRadiiUni;
// The radius parameters (radius)
GrGLSLProgramDataManager::UniformHandle fRadiusUni;
typedef GrGLSLFragmentProcessor INHERITED;
};
void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override {
GLSLRRectsGaussianEdgeFP::GenKey(*this, caps, b);
}
const char* name() const override { return "RRectsGaussianEdgeFP"; }
const SkRRect& first() const { return fFirst; }
Mode firstMode() const { return fFirstMode; }
const SkRRect& second() const { return fSecond; }
Mode secondMode() const { return fSecondMode; }
SkScalar radius() const { return fRadius; }
private:
RRectsGaussianEdgeFP(const SkRRect& first, const SkRRect& second, SkScalar radius)
: INHERITED(kCompatibleWithCoverageAsAlpha_OptimizationFlag)
, fFirst(first)
, fSecond(second)
, fRadius(radius) {
this->initClassID<RRectsGaussianEdgeFP>();
fFirstMode = ComputeMode(fFirst);
fSecondMode = ComputeMode(fSecond);
}
static Mode ComputeMode(const SkRRect& rr) {
if (rr.isCircle()) {
return kCircle_Mode;
} else if (rr.isRect()) {
return kRect_Mode;
} else {
SkASSERT(rr.isSimpleCircular());
return kSimpleCircular_Mode;
}
}
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
return new GLSLRRectsGaussianEdgeFP;
}
bool onIsEqual(const GrFragmentProcessor& proc) const override {
const RRectsGaussianEdgeFP& edgeFP = proc.cast<RRectsGaussianEdgeFP>();
return fFirst == edgeFP.fFirst &&
fSecond == edgeFP.fSecond &&
fRadius == edgeFP.fRadius;
}
SkRRect fFirst;
Mode fFirstMode;
SkRRect fSecond;
Mode fSecondMode;
SkScalar fRadius;
typedef GrFragmentProcessor INHERITED;
};
////////////////////////////////////////////////////////////////////////////
bool SkRRectsGaussianEdgeMaskFilterImpl::asFragmentProcessor(GrFragmentProcessor** fp) const {
if (fp) {
*fp = RRectsGaussianEdgeFP::Make(fFirst, fSecond, fRadius).release();
}
return true;
}
#endif
////////////////////////////////////////////////////////////////////////////
#ifndef SK_IGNORE_TO_STRING
void SkRRectsGaussianEdgeMaskFilterImpl::toString(SkString* str) const {
str->appendf("RRectsGaussianEdgeMaskFilter: ()");
}
#endif
sk_sp<SkFlattenable> SkRRectsGaussianEdgeMaskFilterImpl::CreateProc(SkReadBuffer& buf) {
SkRect rect1, rect2;
buf.readRect(&rect1);
SkScalar xRad1 = buf.readScalar();
SkScalar yRad1 = buf.readScalar();
buf.readRect(&rect2);
SkScalar xRad2 = buf.readScalar();
SkScalar yRad2 = buf.readScalar();
SkScalar radius = buf.readScalar();
return sk_make_sp<SkRRectsGaussianEdgeMaskFilterImpl>(SkRRect::MakeRectXY(rect1, xRad1, yRad1),
SkRRect::MakeRectXY(rect2, xRad2, yRad2),
radius);
}
void SkRRectsGaussianEdgeMaskFilterImpl::flatten(SkWriteBuffer& buf) const {
INHERITED::flatten(buf);
SkASSERT(fFirst.isRect() || fFirst.isCircle() || fFirst.isSimpleCircular());
buf.writeRect(fFirst.rect());
const SkVector& radii1 = fFirst.getSimpleRadii();
buf.writeScalar(radii1.fX);
buf.writeScalar(radii1.fY);
SkASSERT(fSecond.isRect() || fSecond.isCircle() || fSecond.isSimpleCircular());
buf.writeRect(fSecond.rect());
const SkVector& radii2 = fSecond.getSimpleRadii();
buf.writeScalar(radii2.fX);
buf.writeScalar(radii2.fY);
buf.writeScalar(fRadius);
}
///////////////////////////////////////////////////////////////////////////////
sk_sp<SkMaskFilter> SkRRectsGaussianEdgeMaskFilter::Make(const SkRRect& first,
const SkRRect& second,
SkScalar radius) {
if ((!first.isRect() && !first.isCircle() && !first.isSimpleCircular()) ||
(!second.isRect() && !second.isCircle() && !second.isSimpleCircular())) {
// we only deal with the shapes where the x & y radii are equal
// and the same for all four corners
return nullptr;
}
return sk_make_sp<SkRRectsGaussianEdgeMaskFilterImpl>(first, second, radius);
}
///////////////////////////////////////////////////////////////////////////////
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkRRectsGaussianEdgeMaskFilter)
SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkRRectsGaussianEdgeMaskFilterImpl)
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END
///////////////////////////////////////////////////////////////////////////////
|