aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/effects/SkPerlinNoiseShader.cpp
blob: 87db93d3031b03c0c96c144cae89c0070f17f017 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
/*
 * Copyright 2013 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkPerlinNoiseShader.h"
#include "SkColorFilter.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
#include "SkShader.h"
#include "SkUnPreMultiply.h"
#include "SkString.h"

#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "GrCoordTransform.h"
#include "GrInvariantOutput.h"
#include "SkGr.h"
#include "effects/GrConstColorProcessor.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"
#endif

static const int kBlockSize = 256;
static const int kBlockMask = kBlockSize - 1;
static const int kPerlinNoise = 4096;
static const int kRandMaximum = SK_MaxS32; // 2**31 - 1

namespace {

// noiseValue is the color component's value (or color)
// limitValue is the maximum perlin noise array index value allowed
// newValue is the current noise dimension (either width or height)
inline int checkNoise(int noiseValue, int limitValue, int newValue) {
    // If the noise value would bring us out of bounds of the current noise array while we are
    // stiching noise tiles together, wrap the noise around the current dimension of the noise to
    // stay within the array bounds in a continuous fashion (so that tiling lines are not visible)
    if (noiseValue >= limitValue) {
        noiseValue -= newValue;
    }
    return noiseValue;
}

inline SkScalar smoothCurve(SkScalar t) {
    static const SkScalar SK_Scalar3 = 3.0f;

    // returns t * t * (3 - 2 * t)
    return SkScalarMul(SkScalarSquare(t), SK_Scalar3 - 2 * t);
}

} // end namespace

struct SkPerlinNoiseShader::StitchData {
    StitchData()
      : fWidth(0)
      , fWrapX(0)
      , fHeight(0)
      , fWrapY(0)
    {}

    bool operator==(const StitchData& other) const {
        return fWidth == other.fWidth &&
               fWrapX == other.fWrapX &&
               fHeight == other.fHeight &&
               fWrapY == other.fWrapY;
    }

    int fWidth; // How much to subtract to wrap for stitching.
    int fWrapX; // Minimum value to wrap.
    int fHeight;
    int fWrapY;
};

struct SkPerlinNoiseShader::PaintingData {
    PaintingData(const SkISize& tileSize, SkScalar seed,
                 SkScalar baseFrequencyX, SkScalar baseFrequencyY,
                 const SkMatrix& matrix)
    {
        SkVector vec[2] = {
            { SkScalarInvert(baseFrequencyX),   SkScalarInvert(baseFrequencyY)  },
            { SkIntToScalar(tileSize.fWidth),   SkIntToScalar(tileSize.fHeight) },
        };
        matrix.mapVectors(vec, 2);

        fBaseFrequency.set(SkScalarInvert(vec[0].fX), SkScalarInvert(vec[0].fY));
        fTileSize.set(SkScalarRoundToInt(vec[1].fX), SkScalarRoundToInt(vec[1].fY));
        this->init(seed);
        if (!fTileSize.isEmpty()) {
            this->stitch();
        }

#if SK_SUPPORT_GPU
        fPermutationsBitmap.setInfo(SkImageInfo::MakeA8(kBlockSize, 1));
        fPermutationsBitmap.setPixels(fLatticeSelector);

        fNoiseBitmap.setInfo(SkImageInfo::MakeN32Premul(kBlockSize, 4));
        fNoiseBitmap.setPixels(fNoise[0][0]);
#endif
    }

    int         fSeed;
    uint8_t     fLatticeSelector[kBlockSize];
    uint16_t    fNoise[4][kBlockSize][2];
    SkPoint     fGradient[4][kBlockSize];
    SkISize     fTileSize;
    SkVector    fBaseFrequency;
    StitchData  fStitchDataInit;

private:

#if SK_SUPPORT_GPU
    SkBitmap   fPermutationsBitmap;
    SkBitmap   fNoiseBitmap;
#endif

    inline int random()  {
        static const int gRandAmplitude = 16807; // 7**5; primitive root of m
        static const int gRandQ = 127773; // m / a
        static const int gRandR = 2836; // m % a

        int result = gRandAmplitude * (fSeed % gRandQ) - gRandR * (fSeed / gRandQ);
        if (result <= 0)
            result += kRandMaximum;
        fSeed = result;
        return result;
    }

    // Only called once. Could be part of the constructor.
    void init(SkScalar seed)
    {
        static const SkScalar gInvBlockSizef = SkScalarInvert(SkIntToScalar(kBlockSize));

        // According to the SVG spec, we must truncate (not round) the seed value.
        fSeed = SkScalarTruncToInt(seed);
        // The seed value clamp to the range [1, kRandMaximum - 1].
        if (fSeed <= 0) {
            fSeed = -(fSeed % (kRandMaximum - 1)) + 1;
        }
        if (fSeed > kRandMaximum - 1) {
            fSeed = kRandMaximum - 1;
        }
        for (int channel = 0; channel < 4; ++channel) {
            for (int i = 0; i < kBlockSize; ++i) {
                fLatticeSelector[i] = i;
                fNoise[channel][i][0] = (random() % (2 * kBlockSize));
                fNoise[channel][i][1] = (random() % (2 * kBlockSize));
            }
        }
        for (int i = kBlockSize - 1; i > 0; --i) {
            int k = fLatticeSelector[i];
            int j = random() % kBlockSize;
            SkASSERT(j >= 0);
            SkASSERT(j < kBlockSize);
            fLatticeSelector[i] = fLatticeSelector[j];
            fLatticeSelector[j] = k;
        }

        // Perform the permutations now
        {
            // Copy noise data
            uint16_t noise[4][kBlockSize][2];
            for (int i = 0; i < kBlockSize; ++i) {
                for (int channel = 0; channel < 4; ++channel) {
                    for (int j = 0; j < 2; ++j) {
                        noise[channel][i][j] = fNoise[channel][i][j];
                    }
                }
            }
            // Do permutations on noise data
            for (int i = 0; i < kBlockSize; ++i) {
                for (int channel = 0; channel < 4; ++channel) {
                    for (int j = 0; j < 2; ++j) {
                        fNoise[channel][i][j] = noise[channel][fLatticeSelector[i]][j];
                    }
                }
            }
        }

        // Half of the largest possible value for 16 bit unsigned int
        static const SkScalar gHalfMax16bits = 32767.5f;

        // Compute gradients from permutated noise data
        for (int channel = 0; channel < 4; ++channel) {
            for (int i = 0; i < kBlockSize; ++i) {
                fGradient[channel][i] = SkPoint::Make(
                    SkScalarMul(SkIntToScalar(fNoise[channel][i][0] - kBlockSize),
                                gInvBlockSizef),
                    SkScalarMul(SkIntToScalar(fNoise[channel][i][1] - kBlockSize),
                                gInvBlockSizef));
                fGradient[channel][i].normalize();
                // Put the normalized gradient back into the noise data
                fNoise[channel][i][0] = SkScalarRoundToInt(SkScalarMul(
                    fGradient[channel][i].fX + SK_Scalar1, gHalfMax16bits));
                fNoise[channel][i][1] = SkScalarRoundToInt(SkScalarMul(
                    fGradient[channel][i].fY + SK_Scalar1, gHalfMax16bits));
            }
        }
    }

    // Only called once. Could be part of the constructor.
    void stitch() {
        SkScalar tileWidth  = SkIntToScalar(fTileSize.width());
        SkScalar tileHeight = SkIntToScalar(fTileSize.height());
        SkASSERT(tileWidth > 0 && tileHeight > 0);
        // When stitching tiled turbulence, the frequencies must be adjusted
        // so that the tile borders will be continuous.
        if (fBaseFrequency.fX) {
            SkScalar lowFrequencx =
                SkScalarFloorToScalar(tileWidth * fBaseFrequency.fX) / tileWidth;
            SkScalar highFrequencx =
                SkScalarCeilToScalar(tileWidth * fBaseFrequency.fX) / tileWidth;
            // BaseFrequency should be non-negative according to the standard.
            if (fBaseFrequency.fX / lowFrequencx < highFrequencx / fBaseFrequency.fX) {
                fBaseFrequency.fX = lowFrequencx;
            } else {
                fBaseFrequency.fX = highFrequencx;
            }
        }
        if (fBaseFrequency.fY) {
            SkScalar lowFrequency =
                SkScalarFloorToScalar(tileHeight * fBaseFrequency.fY) / tileHeight;
            SkScalar highFrequency =
                SkScalarCeilToScalar(tileHeight * fBaseFrequency.fY) / tileHeight;
            if (fBaseFrequency.fY / lowFrequency < highFrequency / fBaseFrequency.fY) {
                fBaseFrequency.fY = lowFrequency;
            } else {
                fBaseFrequency.fY = highFrequency;
            }
        }
        // Set up TurbulenceInitial stitch values.
        fStitchDataInit.fWidth  =
            SkScalarRoundToInt(tileWidth * fBaseFrequency.fX);
        fStitchDataInit.fWrapX  = kPerlinNoise + fStitchDataInit.fWidth;
        fStitchDataInit.fHeight =
            SkScalarRoundToInt(tileHeight * fBaseFrequency.fY);
        fStitchDataInit.fWrapY  = kPerlinNoise + fStitchDataInit.fHeight;
    }

public:

#if SK_SUPPORT_GPU
    const SkBitmap& getPermutationsBitmap() const { return fPermutationsBitmap; }

    const SkBitmap& getNoiseBitmap() const { return fNoiseBitmap; }
#endif
};

sk_sp<SkShader> SkPerlinNoiseShader::MakeFractalNoise(SkScalar baseFrequencyX,
                                                      SkScalar baseFrequencyY,
                                                      int numOctaves, SkScalar seed,
                                                      const SkISize* tileSize) {
    return sk_sp<SkShader>(new SkPerlinNoiseShader(kFractalNoise_Type, baseFrequencyX,
                                                   baseFrequencyY, numOctaves,
                                                   seed, tileSize));
}

sk_sp<SkShader> SkPerlinNoiseShader::MakeTurbulence(SkScalar baseFrequencyX,
                                                    SkScalar baseFrequencyY,
                                                    int numOctaves, SkScalar seed,
                                                    const SkISize* tileSize) {
    return sk_sp<SkShader>(new SkPerlinNoiseShader(kTurbulence_Type, baseFrequencyX, baseFrequencyY,
                                                   numOctaves, seed, tileSize));
}

SkPerlinNoiseShader::SkPerlinNoiseShader(SkPerlinNoiseShader::Type type,
                                         SkScalar baseFrequencyX,
                                         SkScalar baseFrequencyY,
                                         int numOctaves,
                                         SkScalar seed,
                                         const SkISize* tileSize)
  : fType(type)
  , fBaseFrequencyX(baseFrequencyX)
  , fBaseFrequencyY(baseFrequencyY)
  , fNumOctaves(SkTPin<int>(numOctaves, 0, 255)) // [0,255] octaves allowed
  , fSeed(seed)
  , fTileSize(nullptr == tileSize ? SkISize::Make(0, 0) : *tileSize)
  , fStitchTiles(!fTileSize.isEmpty())
{
    SkASSERT(fNumOctaves >= 0 && fNumOctaves < 256);
}

SkPerlinNoiseShader::~SkPerlinNoiseShader() {
}

sk_sp<SkFlattenable> SkPerlinNoiseShader::CreateProc(SkReadBuffer& buffer) {
    Type type = (Type)buffer.readInt();
    SkScalar freqX = buffer.readScalar();
    SkScalar freqY = buffer.readScalar();
    int octaves = buffer.readInt();
    SkScalar seed = buffer.readScalar();
    SkISize tileSize;
    tileSize.fWidth = buffer.readInt();
    tileSize.fHeight = buffer.readInt();

    switch (type) {
        case kFractalNoise_Type:
            return SkPerlinNoiseShader::MakeFractalNoise(freqX, freqY, octaves, seed,
                                                         &tileSize);
        case kTurbulence_Type:
            return SkPerlinNoiseShader::MakeTurbulence(freqX, freqY, octaves, seed,
                                                       &tileSize);
        default:
            return nullptr;
    }
}

void SkPerlinNoiseShader::flatten(SkWriteBuffer& buffer) const {
    buffer.writeInt((int) fType);
    buffer.writeScalar(fBaseFrequencyX);
    buffer.writeScalar(fBaseFrequencyY);
    buffer.writeInt(fNumOctaves);
    buffer.writeScalar(fSeed);
    buffer.writeInt(fTileSize.fWidth);
    buffer.writeInt(fTileSize.fHeight);
}

SkScalar SkPerlinNoiseShader::PerlinNoiseShaderContext::noise2D(
        int channel, const StitchData& stitchData, const SkPoint& noiseVector) const {
    struct Noise {
        int noisePositionIntegerValue;
        int nextNoisePositionIntegerValue;
        SkScalar noisePositionFractionValue;
        Noise(SkScalar component)
        {
            SkScalar position = component + kPerlinNoise;
            noisePositionIntegerValue = SkScalarFloorToInt(position);
            noisePositionFractionValue = position - SkIntToScalar(noisePositionIntegerValue);
            nextNoisePositionIntegerValue = noisePositionIntegerValue + 1;
        }
    };
    Noise noiseX(noiseVector.x());
    Noise noiseY(noiseVector.y());
    SkScalar u, v;
    const SkPerlinNoiseShader& perlinNoiseShader = static_cast<const SkPerlinNoiseShader&>(fShader);
    // If stitching, adjust lattice points accordingly.
    if (perlinNoiseShader.fStitchTiles) {
        noiseX.noisePositionIntegerValue =
            checkNoise(noiseX.noisePositionIntegerValue, stitchData.fWrapX, stitchData.fWidth);
        noiseY.noisePositionIntegerValue =
            checkNoise(noiseY.noisePositionIntegerValue, stitchData.fWrapY, stitchData.fHeight);
        noiseX.nextNoisePositionIntegerValue =
            checkNoise(noiseX.nextNoisePositionIntegerValue, stitchData.fWrapX, stitchData.fWidth);
        noiseY.nextNoisePositionIntegerValue =
            checkNoise(noiseY.nextNoisePositionIntegerValue, stitchData.fWrapY, stitchData.fHeight);
    }
    noiseX.noisePositionIntegerValue &= kBlockMask;
    noiseY.noisePositionIntegerValue &= kBlockMask;
    noiseX.nextNoisePositionIntegerValue &= kBlockMask;
    noiseY.nextNoisePositionIntegerValue &= kBlockMask;
    int i =
        fPaintingData->fLatticeSelector[noiseX.noisePositionIntegerValue];
    int j =
        fPaintingData->fLatticeSelector[noiseX.nextNoisePositionIntegerValue];
    int b00 = (i + noiseY.noisePositionIntegerValue) & kBlockMask;
    int b10 = (j + noiseY.noisePositionIntegerValue) & kBlockMask;
    int b01 = (i + noiseY.nextNoisePositionIntegerValue) & kBlockMask;
    int b11 = (j + noiseY.nextNoisePositionIntegerValue) & kBlockMask;
    SkScalar sx = smoothCurve(noiseX.noisePositionFractionValue);
    SkScalar sy = smoothCurve(noiseY.noisePositionFractionValue);
    // This is taken 1:1 from SVG spec: http://www.w3.org/TR/SVG11/filters.html#feTurbulenceElement
    SkPoint fractionValue = SkPoint::Make(noiseX.noisePositionFractionValue,
                                          noiseY.noisePositionFractionValue); // Offset (0,0)
    u = fPaintingData->fGradient[channel][b00].dot(fractionValue);
    fractionValue.fX -= SK_Scalar1; // Offset (-1,0)
    v = fPaintingData->fGradient[channel][b10].dot(fractionValue);
    SkScalar a = SkScalarInterp(u, v, sx);
    fractionValue.fY -= SK_Scalar1; // Offset (-1,-1)
    v = fPaintingData->fGradient[channel][b11].dot(fractionValue);
    fractionValue.fX = noiseX.noisePositionFractionValue; // Offset (0,-1)
    u = fPaintingData->fGradient[channel][b01].dot(fractionValue);
    SkScalar b = SkScalarInterp(u, v, sx);
    return SkScalarInterp(a, b, sy);
}

SkScalar SkPerlinNoiseShader::PerlinNoiseShaderContext::calculateTurbulenceValueForPoint(
        int channel, StitchData& stitchData, const SkPoint& point) const {
    const SkPerlinNoiseShader& perlinNoiseShader = static_cast<const SkPerlinNoiseShader&>(fShader);
    if (perlinNoiseShader.fStitchTiles) {
        // Set up TurbulenceInitial stitch values.
        stitchData = fPaintingData->fStitchDataInit;
    }
    SkScalar turbulenceFunctionResult = 0;
    SkPoint noiseVector(SkPoint::Make(SkScalarMul(point.x(), fPaintingData->fBaseFrequency.fX),
                                      SkScalarMul(point.y(), fPaintingData->fBaseFrequency.fY)));
    SkScalar ratio = SK_Scalar1;
    for (int octave = 0; octave < perlinNoiseShader.fNumOctaves; ++octave) {
        SkScalar noise = noise2D(channel, stitchData, noiseVector);
        SkScalar numer = (perlinNoiseShader.fType == kFractalNoise_Type) ?
                            noise : SkScalarAbs(noise);
        turbulenceFunctionResult += numer / ratio;
        noiseVector.fX *= 2;
        noiseVector.fY *= 2;
        ratio *= 2;
        if (perlinNoiseShader.fStitchTiles) {
            // Update stitch values
            stitchData.fWidth  *= 2;
            stitchData.fWrapX   = stitchData.fWidth + kPerlinNoise;
            stitchData.fHeight *= 2;
            stitchData.fWrapY   = stitchData.fHeight + kPerlinNoise;
        }
    }

    // The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2
    // by fractalNoise and (turbulenceFunctionResult) by turbulence.
    if (perlinNoiseShader.fType == kFractalNoise_Type) {
        turbulenceFunctionResult =
            SkScalarMul(turbulenceFunctionResult, SK_ScalarHalf) + SK_ScalarHalf;
    }

    if (channel == 3) { // Scale alpha by paint value
        turbulenceFunctionResult *= SkIntToScalar(getPaintAlpha()) / 255;
    }

    // Clamp result
    return SkScalarPin(turbulenceFunctionResult, 0, SK_Scalar1);
}

SkPMColor SkPerlinNoiseShader::PerlinNoiseShaderContext::shade(
        const SkPoint& point, StitchData& stitchData) const {
    SkPoint newPoint;
    fMatrix.mapPoints(&newPoint, &point, 1);
    newPoint.fX = SkScalarRoundToScalar(newPoint.fX);
    newPoint.fY = SkScalarRoundToScalar(newPoint.fY);

    U8CPU rgba[4];
    for (int channel = 3; channel >= 0; --channel) {
        rgba[channel] = SkScalarFloorToInt(255 *
            calculateTurbulenceValueForPoint(channel, stitchData, newPoint));
    }
    return SkPreMultiplyARGB(rgba[3], rgba[0], rgba[1], rgba[2]);
}

SkShader::Context* SkPerlinNoiseShader::onCreateContext(const ContextRec& rec,
                                                        void* storage) const {
    return new (storage) PerlinNoiseShaderContext(*this, rec);
}

size_t SkPerlinNoiseShader::onContextSize(const ContextRec&) const {
    return sizeof(PerlinNoiseShaderContext);
}

SkPerlinNoiseShader::PerlinNoiseShaderContext::PerlinNoiseShaderContext(
        const SkPerlinNoiseShader& shader, const ContextRec& rec)
    : INHERITED(shader, rec)
{
    SkMatrix newMatrix = *rec.fMatrix;
    newMatrix.preConcat(shader.getLocalMatrix());
    if (rec.fLocalMatrix) {
        newMatrix.preConcat(*rec.fLocalMatrix);
    }
    // This (1,1) translation is due to WebKit's 1 based coordinates for the noise
    // (as opposed to 0 based, usually). The same adjustment is in the setData() function.
    fMatrix.setTranslate(-newMatrix.getTranslateX() + SK_Scalar1, -newMatrix.getTranslateY() + SK_Scalar1);
    fPaintingData = new PaintingData(shader.fTileSize, shader.fSeed, shader.fBaseFrequencyX,
                                     shader.fBaseFrequencyY, newMatrix);
}

SkPerlinNoiseShader::PerlinNoiseShaderContext::~PerlinNoiseShaderContext() { delete fPaintingData; }

void SkPerlinNoiseShader::PerlinNoiseShaderContext::shadeSpan(
        int x, int y, SkPMColor result[], int count) {
    SkPoint point = SkPoint::Make(SkIntToScalar(x), SkIntToScalar(y));
    StitchData stitchData;
    for (int i = 0; i < count; ++i) {
        result[i] = shade(point, stitchData);
        point.fX += SK_Scalar1;
    }
}

/////////////////////////////////////////////////////////////////////

#if SK_SUPPORT_GPU

class GrGLPerlinNoise : public GrGLSLFragmentProcessor {
public:
    void emitCode(EmitArgs&) override;

    static inline void GenKey(const GrProcessor&, const GrGLSLCaps&, GrProcessorKeyBuilder*);

protected:
    void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override;

private:
    GrGLSLProgramDataManager::UniformHandle fStitchDataUni;
    GrGLSLProgramDataManager::UniformHandle fBaseFrequencyUni;

    typedef GrGLSLFragmentProcessor INHERITED;
};

/////////////////////////////////////////////////////////////////////

class GrPerlinNoiseEffect : public GrFragmentProcessor {
public:
    static sk_sp<GrFragmentProcessor> Make(SkPerlinNoiseShader::Type type,
                                           int numOctaves, bool stitchTiles,
                                           SkPerlinNoiseShader::PaintingData* paintingData,
                                           GrTexture* permutationsTexture, GrTexture* noiseTexture,
                                           const SkMatrix& matrix) {
        return sk_sp<GrFragmentProcessor>(
            new GrPerlinNoiseEffect(type, numOctaves, stitchTiles, paintingData,
                                    permutationsTexture, noiseTexture, matrix));
    }

    virtual ~GrPerlinNoiseEffect() { delete fPaintingData; }

    const char* name() const override { return "PerlinNoise"; }

    const SkPerlinNoiseShader::StitchData& stitchData() const { return fPaintingData->fStitchDataInit; }

    SkPerlinNoiseShader::Type type() const { return fType; }
    bool stitchTiles() const { return fStitchTiles; }
    const SkVector& baseFrequency() const { return fPaintingData->fBaseFrequency; }
    int numOctaves() const { return fNumOctaves; }
    const SkMatrix& matrix() const { return fCoordTransform.getMatrix(); }

private:
    GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
        return new GrGLPerlinNoise;
    }

    virtual void onGetGLSLProcessorKey(const GrGLSLCaps& caps,
                                       GrProcessorKeyBuilder* b) const override {
        GrGLPerlinNoise::GenKey(*this, caps, b);
    }

    bool onIsEqual(const GrFragmentProcessor& sBase) const override {
        const GrPerlinNoiseEffect& s = sBase.cast<GrPerlinNoiseEffect>();
        return fType == s.fType &&
               fPaintingData->fBaseFrequency == s.fPaintingData->fBaseFrequency &&
               fNumOctaves == s.fNumOctaves &&
               fStitchTiles == s.fStitchTiles &&
               fPaintingData->fStitchDataInit == s.fPaintingData->fStitchDataInit;
    }

    void onComputeInvariantOutput(GrInvariantOutput* inout) const override {
        inout->setToUnknown(GrInvariantOutput::kWillNot_ReadInput);
    }

    GrPerlinNoiseEffect(SkPerlinNoiseShader::Type type,
                        int numOctaves, bool stitchTiles,
                        SkPerlinNoiseShader::PaintingData* paintingData,
                        GrTexture* permutationsTexture, GrTexture* noiseTexture,
                        const SkMatrix& matrix)
      : fType(type)
      , fNumOctaves(numOctaves)
      , fStitchTiles(stitchTiles)
      , fPermutationsAccess(permutationsTexture)
      , fNoiseAccess(noiseTexture)
      , fPaintingData(paintingData) {
        this->initClassID<GrPerlinNoiseEffect>();
        this->addTextureAccess(&fPermutationsAccess);
        this->addTextureAccess(&fNoiseAccess);
        fCoordTransform.reset(matrix);
        this->addCoordTransform(&fCoordTransform);
    }

    GR_DECLARE_FRAGMENT_PROCESSOR_TEST;

    SkPerlinNoiseShader::Type       fType;
    GrCoordTransform                fCoordTransform;
    int                             fNumOctaves;
    bool                            fStitchTiles;
    GrTextureAccess                 fPermutationsAccess;
    GrTextureAccess                 fNoiseAccess;
    SkPerlinNoiseShader::PaintingData *fPaintingData;

private:
    typedef GrFragmentProcessor INHERITED;
};

/////////////////////////////////////////////////////////////////////
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrPerlinNoiseEffect);

sk_sp<GrFragmentProcessor> GrPerlinNoiseEffect::TestCreate(GrProcessorTestData* d) {
    int      numOctaves = d->fRandom->nextRangeU(2, 10);
    bool     stitchTiles = d->fRandom->nextBool();
    SkScalar seed = SkIntToScalar(d->fRandom->nextU());
    SkISize  tileSize = SkISize::Make(d->fRandom->nextRangeU(4, 4096),
                                      d->fRandom->nextRangeU(4, 4096));
    SkScalar baseFrequencyX = d->fRandom->nextRangeScalar(0.01f,
                                                          0.99f);
    SkScalar baseFrequencyY = d->fRandom->nextRangeScalar(0.01f,
                                                          0.99f);

    sk_sp<SkShader> shader(d->fRandom->nextBool() ?
        SkPerlinNoiseShader::MakeFractalNoise(baseFrequencyX, baseFrequencyY, numOctaves, seed,
                                              stitchTiles ? &tileSize : nullptr) :
        SkPerlinNoiseShader::MakeTurbulence(baseFrequencyX, baseFrequencyY, numOctaves, seed,
                                            stitchTiles ? &tileSize : nullptr));

    GrTest::TestAsFPArgs asFPArgs(d);
    return shader->asFragmentProcessor(asFPArgs.args());
}

void GrGLPerlinNoise::emitCode(EmitArgs& args) {
    const GrPerlinNoiseEffect& pne = args.fFp.cast<GrPerlinNoiseEffect>();

    GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
    GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
    SkString vCoords = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]);

    fBaseFrequencyUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
                                                   kVec2f_GrSLType, kDefault_GrSLPrecision,
                                                   "baseFrequency");
    const char* baseFrequencyUni = uniformHandler->getUniformCStr(fBaseFrequencyUni);

    const char* stitchDataUni = nullptr;
    if (pne.stitchTiles()) {
        fStitchDataUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
                                                    kVec2f_GrSLType, kDefault_GrSLPrecision,
                                                    "stitchData");
        stitchDataUni = uniformHandler->getUniformCStr(fStitchDataUni);
    }

    // There are 4 lines, so the center of each line is 1/8, 3/8, 5/8 and 7/8
    const char* chanCoordR  = "0.125";
    const char* chanCoordG  = "0.375";
    const char* chanCoordB  = "0.625";
    const char* chanCoordA  = "0.875";
    const char* chanCoord   = "chanCoord";
    const char* stitchData  = "stitchData";
    const char* ratio       = "ratio";
    const char* noiseVec    = "noiseVec";
    const char* noiseSmooth = "noiseSmooth";
    const char* floorVal    = "floorVal";
    const char* fractVal    = "fractVal";
    const char* uv          = "uv";
    const char* ab          = "ab";
    const char* latticeIdx  = "latticeIdx";
    const char* bcoords     = "bcoords";
    const char* lattice     = "lattice";
    const char* inc8bit     = "0.00390625";  // 1.0 / 256.0
    // This is the math to convert the two 16bit integer packed into rgba 8 bit input into a
    // [-1,1] vector and perform a dot product between that vector and the provided vector.
    const char* dotLattice  = "dot(((%s.ga + %s.rb * vec2(%s)) * vec2(2.0) - vec2(1.0)), %s);";

    // Add noise function
    static const GrGLSLShaderVar gPerlinNoiseArgs[] =  {
        GrGLSLShaderVar(chanCoord, kFloat_GrSLType),
        GrGLSLShaderVar(noiseVec, kVec2f_GrSLType)
    };

    static const GrGLSLShaderVar gPerlinNoiseStitchArgs[] =  {
        GrGLSLShaderVar(chanCoord, kFloat_GrSLType),
        GrGLSLShaderVar(noiseVec, kVec2f_GrSLType),
        GrGLSLShaderVar(stitchData, kVec2f_GrSLType)
    };

    SkString noiseCode;

    noiseCode.appendf("\tvec4 %s;\n", floorVal);
    noiseCode.appendf("\t%s.xy = floor(%s);\n", floorVal, noiseVec);
    noiseCode.appendf("\t%s.zw = %s.xy + vec2(1.0);\n", floorVal, floorVal);
    noiseCode.appendf("\tvec2 %s = fract(%s);\n", fractVal, noiseVec);

    // smooth curve : t * t * (3 - 2 * t)
    noiseCode.appendf("\n\tvec2 %s = %s * %s * (vec2(3.0) - vec2(2.0) * %s);",
        noiseSmooth, fractVal, fractVal, fractVal);

    // Adjust frequencies if we're stitching tiles
    if (pne.stitchTiles()) {
        noiseCode.appendf("\n\tif(%s.x >= %s.x) { %s.x -= %s.x; }",
                          floorVal, stitchData, floorVal, stitchData);
        noiseCode.appendf("\n\tif(%s.y >= %s.y) { %s.y -= %s.y; }",
                          floorVal, stitchData, floorVal, stitchData);
        noiseCode.appendf("\n\tif(%s.z >= %s.x) { %s.z -= %s.x; }",
                          floorVal, stitchData, floorVal, stitchData);
        noiseCode.appendf("\n\tif(%s.w >= %s.y) { %s.w -= %s.y; }",
                          floorVal, stitchData, floorVal, stitchData);
    }

    // Get texture coordinates and normalize
    noiseCode.appendf("\n\t%s = fract(floor(mod(%s, 256.0)) / vec4(256.0));\n",
                      floorVal, floorVal);

    // Get permutation for x
    {
        SkString xCoords("");
        xCoords.appendf("vec2(%s.x, 0.5)", floorVal);

        noiseCode.appendf("\n\tvec2 %s;\n\t%s.x = ", latticeIdx, latticeIdx);
        fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[0], xCoords.c_str(),
                                         kVec2f_GrSLType);
        noiseCode.append(".r;");
    }

    // Get permutation for x + 1
    {
        SkString xCoords("");
        xCoords.appendf("vec2(%s.z, 0.5)", floorVal);

        noiseCode.appendf("\n\t%s.y = ", latticeIdx);
        fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[0], xCoords.c_str(),
                                         kVec2f_GrSLType);
        noiseCode.append(".r;");
    }

#if defined(SK_BUILD_FOR_ANDROID)
    // Android rounding for Tegra devices, like, for example: Xoom (Tegra 2), Nexus 7 (Tegra 3).
    // The issue is that colors aren't accurate enough on Tegra devices. For example, if an 8 bit
    // value of 124 (or 0.486275 here) is entered, we can get a texture value of 123.513725
    // (or 0.484368 here). The following rounding operation prevents these precision issues from
    // affecting the result of the noise by making sure that we only have multiples of 1/255.
    // (Note that 1/255 is about 0.003921569, which is the value used here).
    noiseCode.appendf("\n\t%s = floor(%s * vec2(255.0) + vec2(0.5)) * vec2(0.003921569);",
                      latticeIdx, latticeIdx);
#endif

    // Get (x,y) coordinates with the permutated x
    noiseCode.appendf("\n\tvec4 %s = fract(%s.xyxy + %s.yyww);", bcoords, latticeIdx, floorVal);

    noiseCode.appendf("\n\n\tvec2 %s;", uv);
    // Compute u, at offset (0,0)
    {
        SkString latticeCoords("");
        latticeCoords.appendf("vec2(%s.x, %s)", bcoords, chanCoord);
        noiseCode.appendf("\n\tvec4 %s = ", lattice);
        fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[1], latticeCoords.c_str(),
                                         kVec2f_GrSLType);
        noiseCode.appendf(".bgra;\n\t%s.x = ", uv);
        noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
    }

    noiseCode.appendf("\n\t%s.x -= 1.0;", fractVal);
    // Compute v, at offset (-1,0)
    {
        SkString latticeCoords("");
        latticeCoords.appendf("vec2(%s.y, %s)", bcoords, chanCoord);
        noiseCode.append("\n\tlattice = ");
        fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[1], latticeCoords.c_str(),
                                         kVec2f_GrSLType);
        noiseCode.appendf(".bgra;\n\t%s.y = ", uv);
        noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
    }

    // Compute 'a' as a linear interpolation of 'u' and 'v'
    noiseCode.appendf("\n\tvec2 %s;", ab);
    noiseCode.appendf("\n\t%s.x = mix(%s.x, %s.y, %s.x);", ab, uv, uv, noiseSmooth);

    noiseCode.appendf("\n\t%s.y -= 1.0;", fractVal);
    // Compute v, at offset (-1,-1)
    {
        SkString latticeCoords("");
        latticeCoords.appendf("vec2(%s.w, %s)", bcoords, chanCoord);
        noiseCode.append("\n\tlattice = ");
        fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[1], latticeCoords.c_str(),
                                         kVec2f_GrSLType);
        noiseCode.appendf(".bgra;\n\t%s.y = ", uv);
        noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
    }

    noiseCode.appendf("\n\t%s.x += 1.0;", fractVal);
    // Compute u, at offset (0,-1)
    {
        SkString latticeCoords("");
        latticeCoords.appendf("vec2(%s.z, %s)", bcoords, chanCoord);
        noiseCode.append("\n\tlattice = ");
        fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[1], latticeCoords.c_str(),
                                         kVec2f_GrSLType);
        noiseCode.appendf(".bgra;\n\t%s.x = ", uv);
        noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
    }

    // Compute 'b' as a linear interpolation of 'u' and 'v'
    noiseCode.appendf("\n\t%s.y = mix(%s.x, %s.y, %s.x);", ab, uv, uv, noiseSmooth);
    // Compute the noise as a linear interpolation of 'a' and 'b'
    noiseCode.appendf("\n\treturn mix(%s.x, %s.y, %s.y);\n", ab, ab, noiseSmooth);

    SkString noiseFuncName;
    if (pne.stitchTiles()) {
        fragBuilder->emitFunction(kFloat_GrSLType,
                                  "perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseStitchArgs),
                                  gPerlinNoiseStitchArgs, noiseCode.c_str(), &noiseFuncName);
    } else {
        fragBuilder->emitFunction(kFloat_GrSLType,
                                  "perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseArgs),
                                  gPerlinNoiseArgs, noiseCode.c_str(), &noiseFuncName);
    }

    // There are rounding errors if the floor operation is not performed here
    fragBuilder->codeAppendf("\n\t\tvec2 %s = floor(%s.xy) * %s;",
                             noiseVec, vCoords.c_str(), baseFrequencyUni);

    // Clear the color accumulator
    fragBuilder->codeAppendf("\n\t\t%s = vec4(0.0);", args.fOutputColor);

    if (pne.stitchTiles()) {
        // Set up TurbulenceInitial stitch values.
        fragBuilder->codeAppendf("vec2 %s = %s;", stitchData, stitchDataUni);
    }

    fragBuilder->codeAppendf("float %s = 1.0;", ratio);

    // Loop over all octaves
    fragBuilder->codeAppendf("for (int octave = 0; octave < %d; ++octave) {", pne.numOctaves());

    fragBuilder->codeAppendf("%s += ", args.fOutputColor);
    if (pne.type() != SkPerlinNoiseShader::kFractalNoise_Type) {
        fragBuilder->codeAppend("abs(");
    }
    if (pne.stitchTiles()) {
        fragBuilder->codeAppendf(
            "vec4(\n\t\t\t\t%s(%s, %s, %s),\n\t\t\t\t%s(%s, %s, %s),"
                 "\n\t\t\t\t%s(%s, %s, %s),\n\t\t\t\t%s(%s, %s, %s))",
            noiseFuncName.c_str(), chanCoordR, noiseVec, stitchData,
            noiseFuncName.c_str(), chanCoordG, noiseVec, stitchData,
            noiseFuncName.c_str(), chanCoordB, noiseVec, stitchData,
            noiseFuncName.c_str(), chanCoordA, noiseVec, stitchData);
    } else {
        fragBuilder->codeAppendf(
            "vec4(\n\t\t\t\t%s(%s, %s),\n\t\t\t\t%s(%s, %s),"
                 "\n\t\t\t\t%s(%s, %s),\n\t\t\t\t%s(%s, %s))",
            noiseFuncName.c_str(), chanCoordR, noiseVec,
            noiseFuncName.c_str(), chanCoordG, noiseVec,
            noiseFuncName.c_str(), chanCoordB, noiseVec,
            noiseFuncName.c_str(), chanCoordA, noiseVec);
    }
    if (pne.type() != SkPerlinNoiseShader::kFractalNoise_Type) {
        fragBuilder->codeAppendf(")"); // end of "abs("
    }
    fragBuilder->codeAppendf(" * %s;", ratio);

    fragBuilder->codeAppendf("\n\t\t\t%s *= vec2(2.0);", noiseVec);
    fragBuilder->codeAppendf("\n\t\t\t%s *= 0.5;", ratio);

    if (pne.stitchTiles()) {
        fragBuilder->codeAppendf("\n\t\t\t%s *= vec2(2.0);", stitchData);
    }
    fragBuilder->codeAppend("\n\t\t}"); // end of the for loop on octaves

    if (pne.type() == SkPerlinNoiseShader::kFractalNoise_Type) {
        // The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2
        // by fractalNoise and (turbulenceFunctionResult) by turbulence.
        fragBuilder->codeAppendf("\n\t\t%s = %s * vec4(0.5) + vec4(0.5);",
                                 args.fOutputColor,args.fOutputColor);
    }

    // Clamp values
    fragBuilder->codeAppendf("\n\t\t%s = clamp(%s, 0.0, 1.0);", args.fOutputColor, args.fOutputColor);

    // Pre-multiply the result
    fragBuilder->codeAppendf("\n\t\t%s = vec4(%s.rgb * %s.aaa, %s.a);\n",
                             args.fOutputColor, args.fOutputColor,
                             args.fOutputColor, args.fOutputColor);
}

void GrGLPerlinNoise::GenKey(const GrProcessor& processor, const GrGLSLCaps&,
                             GrProcessorKeyBuilder* b) {
    const GrPerlinNoiseEffect& turbulence = processor.cast<GrPerlinNoiseEffect>();

    uint32_t key = turbulence.numOctaves();

    key = key << 3; // Make room for next 3 bits

    switch (turbulence.type()) {
        case SkPerlinNoiseShader::kFractalNoise_Type:
            key |= 0x1;
            break;
        case SkPerlinNoiseShader::kTurbulence_Type:
            key |= 0x2;
            break;
        default:
            // leave key at 0
            break;
    }

    if (turbulence.stitchTiles()) {
        key |= 0x4; // Flip the 3rd bit if tile stitching is on
    }

    b->add32(key);
}

void GrGLPerlinNoise::onSetData(const GrGLSLProgramDataManager& pdman,
                                const GrProcessor& processor) {
    INHERITED::onSetData(pdman, processor);

    const GrPerlinNoiseEffect& turbulence = processor.cast<GrPerlinNoiseEffect>();

    const SkVector& baseFrequency = turbulence.baseFrequency();
    pdman.set2f(fBaseFrequencyUni, baseFrequency.fX, baseFrequency.fY);

    if (turbulence.stitchTiles()) {
        const SkPerlinNoiseShader::StitchData& stitchData = turbulence.stitchData();
        pdman.set2f(fStitchDataUni, SkIntToScalar(stitchData.fWidth),
                                   SkIntToScalar(stitchData.fHeight));
    }
}

/////////////////////////////////////////////////////////////////////
sk_sp<GrFragmentProcessor> SkPerlinNoiseShader::asFragmentProcessor(const AsFPArgs& args) const {
    SkASSERT(args.fContext);

    SkMatrix localMatrix = this->getLocalMatrix();
    if (args.fLocalMatrix) {
        localMatrix.preConcat(*args.fLocalMatrix);
    }

    SkMatrix matrix = *args.fViewMatrix;
    matrix.preConcat(localMatrix);

    if (0 == fNumOctaves) {
        if (kFractalNoise_Type == fType) {
            // Extract the incoming alpha and emit rgba = (a/4, a/4, a/4, a/2)
            // TODO: Either treat the output of this shader as sRGB or allow client to specify a
            // color space of the noise. Either way, this case (and the GLSL) need to convert to
            // the destination.
            sk_sp<GrFragmentProcessor> inner(
                GrConstColorProcessor::Make(GrColor4f::FromGrColor(0x80404040),
                                            GrConstColorProcessor::kModulateRGBA_InputMode));
            return GrFragmentProcessor::MulOutputByInputAlpha(std::move(inner));
        }
        // Emit zero.
        return GrConstColorProcessor::Make(GrColor4f::TransparentBlack(),
                                           GrConstColorProcessor::kIgnore_InputMode);
    }

    // Either we don't stitch tiles, either we have a valid tile size
    SkASSERT(!fStitchTiles || !fTileSize.isEmpty());

    SkPerlinNoiseShader::PaintingData* paintingData =
            new PaintingData(fTileSize, fSeed, fBaseFrequencyX, fBaseFrequencyY, matrix);
    sk_sp<GrTexture> permutationsTexture(
        GrRefCachedBitmapTexture(args.fContext, paintingData->getPermutationsBitmap(),
                                 GrTextureParams::ClampNoFilter(), args.fGammaTreatment));
    sk_sp<GrTexture> noiseTexture(
        GrRefCachedBitmapTexture(args.fContext, paintingData->getNoiseBitmap(),
                                 GrTextureParams::ClampNoFilter(), args.fGammaTreatment));

    SkMatrix m = *args.fViewMatrix;
    m.setTranslateX(-localMatrix.getTranslateX() + SK_Scalar1);
    m.setTranslateY(-localMatrix.getTranslateY() + SK_Scalar1);
    if ((permutationsTexture) && (noiseTexture)) {
        sk_sp<GrFragmentProcessor> inner(
            GrPerlinNoiseEffect::Make(fType,
                                      fNumOctaves,
                                      fStitchTiles,
                                      paintingData,
                                      permutationsTexture.get(), noiseTexture.get(),
                                      m));
        return GrFragmentProcessor::MulOutputByInputAlpha(std::move(inner));
    }
    delete paintingData;
    return nullptr;
}

#endif

#ifndef SK_IGNORE_TO_STRING
void SkPerlinNoiseShader::toString(SkString* str) const {
    str->append("SkPerlinNoiseShader: (");

    str->append("type: ");
    switch (fType) {
        case kFractalNoise_Type:
            str->append("\"fractal noise\"");
            break;
        case kTurbulence_Type:
            str->append("\"turbulence\"");
            break;
        default:
            str->append("\"unknown\"");
            break;
    }
    str->append(" base frequency: (");
    str->appendScalar(fBaseFrequencyX);
    str->append(", ");
    str->appendScalar(fBaseFrequencyY);
    str->append(") number of octaves: ");
    str->appendS32(fNumOctaves);
    str->append(" seed: ");
    str->appendScalar(fSeed);
    str->append(" stitch tiles: ");
    str->append(fStitchTiles ? "true " : "false ");

    this->INHERITED::toString(str);

    str->append(")");
}
#endif