aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/effects/SkMatrixConvolutionImageFilter.cpp
blob: ae29bcb01b338a0397e183dce4185b113c48f637 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
/*
 * Copyright 2012 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkMatrixConvolutionImageFilter.h"
#include "SkBitmap.h"
#include "SkColorPriv.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
#include "SkRect.h"
#include "SkUnPreMultiply.h"

#if SK_SUPPORT_GPU
#include "effects/GrMatrixConvolutionEffect.h"
#endif

// We need to be able to read at most SK_MaxS32 bytes, so divide that
// by the size of a scalar to know how many scalars we can read.
static const int32_t gMaxKernelSize = SK_MaxS32 / sizeof(SkScalar);

SkMatrixConvolutionImageFilter::SkMatrixConvolutionImageFilter(
    const SkISize& kernelSize,
    const SkScalar* kernel,
    SkScalar gain,
    SkScalar bias,
    const SkIPoint& kernelOffset,
    TileMode tileMode,
    bool convolveAlpha,
    SkImageFilter* input,
    const CropRect* cropRect,
    uint32_t uniqueID)
  : INHERITED(1, &input, cropRect, uniqueID),
    fKernelSize(kernelSize),
    fGain(gain),
    fBias(bias),
    fKernelOffset(kernelOffset),
    fTileMode(tileMode),
    fConvolveAlpha(convolveAlpha) {
    size_t size = (size_t) sk_64_mul(fKernelSize.width(), fKernelSize.height());
    fKernel = SkNEW_ARRAY(SkScalar, size);
    memcpy(fKernel, kernel, size * sizeof(SkScalar));
    SkASSERT(kernelSize.fWidth >= 1 && kernelSize.fHeight >= 1);
    SkASSERT(kernelOffset.fX >= 0 && kernelOffset.fX < kernelSize.fWidth);
    SkASSERT(kernelOffset.fY >= 0 && kernelOffset.fY < kernelSize.fHeight);
}

SkMatrixConvolutionImageFilter* SkMatrixConvolutionImageFilter::Create(
    const SkISize& kernelSize,
    const SkScalar* kernel,
    SkScalar gain,
    SkScalar bias,
    const SkIPoint& kernelOffset,
    TileMode tileMode,
    bool convolveAlpha,
    SkImageFilter* input,
    const CropRect* cropRect,
    uint32_t uniqueID) {
    if (kernelSize.width() < 1 || kernelSize.height() < 1) {
        return NULL;
    }
    if (gMaxKernelSize / kernelSize.fWidth < kernelSize.fHeight) {
        return NULL;
    }
    if (!kernel) {
        return NULL;
    }
    return SkNEW_ARGS(SkMatrixConvolutionImageFilter, (kernelSize, kernel, gain, bias,
                                                       kernelOffset, tileMode, convolveAlpha,
                                                       input, cropRect, uniqueID));
}

#ifdef SK_SUPPORT_LEGACY_DEEPFLATTENING
static bool tile_mode_is_valid(SkMatrixConvolutionImageFilter::TileMode tileMode) {
    switch (tileMode) {
        case SkMatrixConvolutionImageFilter::kClamp_TileMode:
        case SkMatrixConvolutionImageFilter::kRepeat_TileMode:
        case SkMatrixConvolutionImageFilter::kClampToBlack_TileMode:
            return true;
        default:
            break;
    }
    return false;
}

SkMatrixConvolutionImageFilter::SkMatrixConvolutionImageFilter(SkReadBuffer& buffer)
    : INHERITED(1, buffer) {
    fKernelSize.fWidth = buffer.readInt();
    fKernelSize.fHeight = buffer.readInt();
    if ((fKernelSize.fWidth >= 1) && (fKernelSize.fHeight >= 1) &&
        // Make sure size won't be larger than a signed int,
        // which would still be extremely large for a kernel,
        // but we don't impose a hard limit for kernel size
        (gMaxKernelSize / fKernelSize.fWidth >= fKernelSize.fHeight)) {
        size_t size = fKernelSize.fWidth * fKernelSize.fHeight;
        fKernel = SkNEW_ARRAY(SkScalar, size);
        SkDEBUGCODE(bool success =) buffer.readScalarArray(fKernel, size);
        SkASSERT(success);
    } else {
        fKernel = 0;
    }
    fGain = buffer.readScalar();
    fBias = buffer.readScalar();
    fKernelOffset.fX = buffer.readInt();
    fKernelOffset.fY = buffer.readInt();
    fTileMode = (TileMode) buffer.readInt();
    fConvolveAlpha = buffer.readBool();
    buffer.validate((fKernel != 0) &&
                    SkScalarIsFinite(fGain) &&
                    SkScalarIsFinite(fBias) &&
                    tile_mode_is_valid(fTileMode) &&
                    (fKernelOffset.fX >= 0) && (fKernelOffset.fX < fKernelSize.fWidth) &&
                    (fKernelOffset.fY >= 0) && (fKernelOffset.fY < fKernelSize.fHeight));
}
#endif

SkFlattenable* SkMatrixConvolutionImageFilter::CreateProc(SkReadBuffer& buffer) {
    SK_IMAGEFILTER_UNFLATTEN_COMMON(common, 1);
    SkISize kernelSize;
    kernelSize.fWidth = buffer.readInt();
    kernelSize.fHeight = buffer.readInt();
    const int count = buffer.getArrayCount();

    const int64_t kernelArea = sk_64_mul(kernelSize.width(), kernelSize.height());
    if (!buffer.validate(kernelArea == count)) {
        return NULL;
    }
    SkAutoSTArray<16, SkScalar> kernel(count);
    if (!buffer.readScalarArray(kernel.get(), count)) {
        return NULL;
    }
    SkScalar gain = buffer.readScalar();
    SkScalar bias = buffer.readScalar();
    SkIPoint kernelOffset;
    kernelOffset.fX = buffer.readInt();
    kernelOffset.fY = buffer.readInt();
    TileMode tileMode = (TileMode)buffer.readInt();
    bool convolveAlpha = buffer.readBool();
    return Create(kernelSize, kernel.get(), gain, bias, kernelOffset, tileMode, convolveAlpha,
                  common.getInput(0), &common.cropRect(), common.uniqueID());
}

void SkMatrixConvolutionImageFilter::flatten(SkWriteBuffer& buffer) const {
    this->INHERITED::flatten(buffer);
    buffer.writeInt(fKernelSize.fWidth);
    buffer.writeInt(fKernelSize.fHeight);
    buffer.writeScalarArray(fKernel, fKernelSize.fWidth * fKernelSize.fHeight);
    buffer.writeScalar(fGain);
    buffer.writeScalar(fBias);
    buffer.writeInt(fKernelOffset.fX);
    buffer.writeInt(fKernelOffset.fY);
    buffer.writeInt((int) fTileMode);
    buffer.writeBool(fConvolveAlpha);
}

SkMatrixConvolutionImageFilter::~SkMatrixConvolutionImageFilter() {
    delete[] fKernel;
}

class UncheckedPixelFetcher {
public:
    static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) {
        return *src.getAddr32(x, y);
    }
};

class ClampPixelFetcher {
public:
    static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) {
        x = SkPin32(x, bounds.fLeft, bounds.fRight - 1);
        y = SkPin32(y, bounds.fTop, bounds.fBottom - 1);
        return *src.getAddr32(x, y);
    }
};

class RepeatPixelFetcher {
public:
    static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) {
        x = (x - bounds.left()) % bounds.width() + bounds.left();
        y = (y - bounds.top()) % bounds.height() + bounds.top();
        if (x < bounds.left()) {
            x += bounds.width();
        }
        if (y < bounds.top()) {
            y += bounds.height();
        }
        return *src.getAddr32(x, y);
    }
};

class ClampToBlackPixelFetcher {
public:
    static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) {
        if (x < bounds.fLeft || x >= bounds.fRight || y < bounds.fTop || y >= bounds.fBottom) {
            return 0;
        } else {
            return *src.getAddr32(x, y);
        }
    }
};

template<class PixelFetcher, bool convolveAlpha>
void SkMatrixConvolutionImageFilter::filterPixels(const SkBitmap& src,
                                                  SkBitmap* result,
                                                  const SkIRect& r,
                                                  const SkIRect& bounds) const {
    SkIRect rect(r);
    if (!rect.intersect(bounds)) {
        return;
    }
    for (int y = rect.fTop; y < rect.fBottom; ++y) {
        SkPMColor* dptr = result->getAddr32(rect.fLeft - bounds.fLeft, y - bounds.fTop);
        for (int x = rect.fLeft; x < rect.fRight; ++x) {
            SkScalar sumA = 0, sumR = 0, sumG = 0, sumB = 0;
            for (int cy = 0; cy < fKernelSize.fHeight; cy++) {
                for (int cx = 0; cx < fKernelSize.fWidth; cx++) {
                    SkPMColor s = PixelFetcher::fetch(src,
                                                      x + cx - fKernelOffset.fX,
                                                      y + cy - fKernelOffset.fY,
                                                      bounds);
                    SkScalar k = fKernel[cy * fKernelSize.fWidth + cx];
                    if (convolveAlpha) {
                        sumA += SkScalarMul(SkIntToScalar(SkGetPackedA32(s)), k);
                    }
                    sumR += SkScalarMul(SkIntToScalar(SkGetPackedR32(s)), k);
                    sumG += SkScalarMul(SkIntToScalar(SkGetPackedG32(s)), k);
                    sumB += SkScalarMul(SkIntToScalar(SkGetPackedB32(s)), k);
                }
            }
            int a = convolveAlpha
                  ? SkClampMax(SkScalarFloorToInt(SkScalarMul(sumA, fGain) + fBias), 255)
                  : 255;
            int r = SkClampMax(SkScalarFloorToInt(SkScalarMul(sumR, fGain) + fBias), a);
            int g = SkClampMax(SkScalarFloorToInt(SkScalarMul(sumG, fGain) + fBias), a);
            int b = SkClampMax(SkScalarFloorToInt(SkScalarMul(sumB, fGain) + fBias), a);
            if (!convolveAlpha) {
                a = SkGetPackedA32(PixelFetcher::fetch(src, x, y, bounds));
                *dptr++ = SkPreMultiplyARGB(a, r, g, b);
            } else {
                *dptr++ = SkPackARGB32(a, r, g, b);
            }
        }
    }
}

template<class PixelFetcher>
void SkMatrixConvolutionImageFilter::filterPixels(const SkBitmap& src,
                                                  SkBitmap* result,
                                                  const SkIRect& rect,
                                                  const SkIRect& bounds) const {
    if (fConvolveAlpha) {
        filterPixels<PixelFetcher, true>(src, result, rect, bounds);
    } else {
        filterPixels<PixelFetcher, false>(src, result, rect, bounds);
    }
}

void SkMatrixConvolutionImageFilter::filterInteriorPixels(const SkBitmap& src,
                                                          SkBitmap* result,
                                                          const SkIRect& rect,
                                                          const SkIRect& bounds) const {
    filterPixels<UncheckedPixelFetcher>(src, result, rect, bounds);
}

void SkMatrixConvolutionImageFilter::filterBorderPixels(const SkBitmap& src,
                                                        SkBitmap* result,
                                                        const SkIRect& rect,
                                                        const SkIRect& bounds) const {
    switch (fTileMode) {
        case kClamp_TileMode:
            filterPixels<ClampPixelFetcher>(src, result, rect, bounds);
            break;
        case kRepeat_TileMode:
            filterPixels<RepeatPixelFetcher>(src, result, rect, bounds);
            break;
        case kClampToBlack_TileMode:
            filterPixels<ClampToBlackPixelFetcher>(src, result, rect, bounds);
            break;
    }
}

// FIXME:  This should be refactored to SkImageFilterUtils for
// use by other filters.  For now, we assume the input is always
// premultiplied and unpremultiply it
static SkBitmap unpremultiplyBitmap(const SkBitmap& src)
{
    SkAutoLockPixels alp(src);
    if (!src.getPixels()) {
        return SkBitmap();
    }
    SkBitmap result;
    if (!result.tryAllocPixels(src.info())) {
        return SkBitmap();
    }
    for (int y = 0; y < src.height(); ++y) {
        const uint32_t* srcRow = src.getAddr32(0, y);
        uint32_t* dstRow = result.getAddr32(0, y);
        for (int x = 0; x < src.width(); ++x) {
            dstRow[x] = SkUnPreMultiply::PMColorToColor(srcRow[x]);
        }
    }
    return result;
}

bool SkMatrixConvolutionImageFilter::onFilterImage(Proxy* proxy,
                                                   const SkBitmap& source,
                                                   const Context& ctx,
                                                   SkBitmap* result,
                                                   SkIPoint* offset) const {
    SkBitmap src = source;
    SkIPoint srcOffset = SkIPoint::Make(0, 0);
    if (getInput(0) && !getInput(0)->filterImage(proxy, source, ctx, &src, &srcOffset)) {
        return false;
    }

    if (src.colorType() != kN32_SkColorType) {
        return false;
    }

    SkIRect bounds;
    if (!this->applyCropRect(ctx, proxy, src, &srcOffset, &bounds, &src)) {
        return false;
    }

    if (!fConvolveAlpha && !src.isOpaque()) {
        src = unpremultiplyBitmap(src);
    }

    SkAutoLockPixels alp(src);
    if (!src.getPixels()) {
        return false;
    }

    if (!result->tryAllocPixels(src.info().makeWH(bounds.width(), bounds.height()))) {
        return false;
    }

    offset->fX = bounds.fLeft;
    offset->fY = bounds.fTop;
    bounds.offset(-srcOffset);
    SkIRect interior = SkIRect::MakeXYWH(bounds.left() + fKernelOffset.fX,
                                         bounds.top() + fKernelOffset.fY,
                                         bounds.width() - fKernelSize.fWidth + 1,
                                         bounds.height() - fKernelSize.fHeight + 1);
    SkIRect top = SkIRect::MakeLTRB(bounds.left(), bounds.top(), bounds.right(), interior.top());
    SkIRect bottom = SkIRect::MakeLTRB(bounds.left(), interior.bottom(),
                                       bounds.right(), bounds.bottom());
    SkIRect left = SkIRect::MakeLTRB(bounds.left(), interior.top(),
                                     interior.left(), interior.bottom());
    SkIRect right = SkIRect::MakeLTRB(interior.right(), interior.top(),
                                      bounds.right(), interior.bottom());
    filterBorderPixels(src, result, top, bounds);
    filterBorderPixels(src, result, left, bounds);
    filterInteriorPixels(src, result, interior, bounds);
    filterBorderPixels(src, result, right, bounds);
    filterBorderPixels(src, result, bottom, bounds);
    return true;
}

bool SkMatrixConvolutionImageFilter::onFilterBounds(const SkIRect& src, const SkMatrix& ctm,
                                                    SkIRect* dst) const {
    SkIRect bounds = src;
    bounds.fRight += fKernelSize.width() - 1;
    bounds.fBottom += fKernelSize.height() - 1;
    bounds.offset(-fKernelOffset);
    if (getInput(0) && !getInput(0)->filterBounds(bounds, ctm, &bounds)) {
        return false;
    }
    *dst = bounds;
    return true;
}

#if SK_SUPPORT_GPU

static GrTextureDomain::Mode convert_tilemodes(
        SkMatrixConvolutionImageFilter::TileMode tileMode) {
    switch (tileMode) {
        case SkMatrixConvolutionImageFilter::kClamp_TileMode:
            return GrTextureDomain::kClamp_Mode;
        case SkMatrixConvolutionImageFilter::kRepeat_TileMode:
            return GrTextureDomain::kRepeat_Mode;
        case SkMatrixConvolutionImageFilter::kClampToBlack_TileMode:
            return GrTextureDomain::kDecal_Mode;
        default:
            SkASSERT(false);
    }
    return GrTextureDomain::kIgnore_Mode;
}

bool SkMatrixConvolutionImageFilter::asFragmentProcessor(GrFragmentProcessor** fp,
                                                         GrTexture* texture,
                                                         const SkMatrix&,
                                                         const SkIRect& bounds) const {
    if (!fp) {
        return fKernelSize.width() * fKernelSize.height() <= MAX_KERNEL_SIZE;
    }
    SkASSERT(fKernelSize.width() * fKernelSize.height() <= MAX_KERNEL_SIZE);
    *fp = GrMatrixConvolutionEffect::Create(texture,
                                            bounds,
                                            fKernelSize,
                                            fKernel,
                                            fGain,
                                            fBias,
                                            fKernelOffset,
                                            convert_tilemodes(fTileMode),
                                            fConvolveAlpha);
    return true;
}
#endif